• 제목/요약/키워드: Monte Carlo Particle Transport

검색결과 63건 처리시간 0.024초

Dose Computational Time Reduction For Monte Carlo Treatment Planning

  • Park, Chang-Hyun;Park, Dahl;Park, Dong-Hyun;Park, Sung-Yong;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.116-118
    • /
    • 2002
  • It has been noted that Monte Carlo simulations are the most accurate method to calculate dose distributions in any material and geometry. Monte Carlo transport algorithms determine the absorbed dose by following the path of representative particles as they travel through the medium. Accurate Monte Carlo dose calculations rely on detailed modeling of the radiation source. We modeled the effects of beam modifiers such as collimators, blocks, wedges, etc. of our accelerator, Varian Clinac 600C/D to ensure accurate representation of the radiation source using the EGSnrc based BEAM code. These were used in the EGSnrc based DOSXYZ code for the simulation of particles transport through a voxel based Cartesian coordinate system. Because Monte Carlo methods use particle-by-particle methods to simulate a radiation transport, more particle histories yield the better representation of the actual dose. But the prohibitively long time required to get high resolution and accuracy calculations has prevented the use of Monte Carlo methods in the actual clinical spots. Our ultimate aim is to develop a Monte Carlo dose calculation system designed specifically for radiation therapy planning, which is distinguished from current dose calculation methods. The purpose of this study in the present phase was to get dose calculation results corresponding to measurements within practical time limit. We used parallel processing and some variance reduction techniques, therefore reduced the computational time, preserving a good agreement between calculations of depth dose distributions and measurements within 5% deviations.

  • PDF

In-line (α,n) source sampling methodology for monte carlo radiation transport simulations

  • Griesheimer, David P.;Pavlou, Andrew T.;Thompson, Jason T.;Holmes, Jesse C.;Zerkle, Michael L.;Caro, Edmund;Joo, Hansem
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1199-1210
    • /
    • 2017
  • A new in-line method for sampling neutrons emitted in (${\alpha}$,n) reactions based on alpha particle source information has been developed for continuous-energy Monte Carlo simulations. The new method uses a continuous-slowing-down model coupled with (${\alpha}$,n) cross section data to precompute the expected neutron yield over the alpha particle lifetime. This eliminates the complexity and computational cost associated with explicit charged particle transport. When combined with an integrated alpha particle decay source sampling capability, the proposed method provides an efficient and accurate method for sampling (${\alpha}$,n) neutrons based solely on nuclide inventories in the problem, with no additional user input required. Results from several example calculations show that the proposed method reproduces the (${\alpha}$,n) neutron yields and energy spectra from reference experiments and calculations.

Limits on the efficiency of event-based algorithms for Monte Carlo neutron transport

  • Romano, Paul K.;Siegel, Andrew R.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1165-1171
    • /
    • 2017
  • The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, the vector speedup is also limited by differences in the execution time for events being carried out in a single event-iteration.

Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo

  • Shriwise, Patrick C.;Davis, Andrew;Jacobson, Lucas J.;Wilson, Paul P.H.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1189-1198
    • /
    • 2017
  • Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.

혼성 유체-입자(몬테칼로)법을 이용한 유사스파크 방전의 기동 특성 해석 (Analysis on the lgnition Charac teristics of Pseudospark Discharge Using Hybrid Fluid-Particle(Monte Carlo) Method)

  • 심재학;주홍진;강형부
    • 한국전기전자재료학회논문지
    • /
    • 제11권7호
    • /
    • pp.571-580
    • /
    • 1998
  • The numerical model that can describe the ignition of pseudospark discharge using hybrid fluid-particle(Monte Carlo )method has been developed. This model consists of the fluid expression for transport of electrons and ions and Poisson's equation in the electric field. The fluid equation determines the spatiotemporal dependence of charged particle densities and the ionization source term is computed using the Monte carlo method. This model has been used to study the evolution of a discharge in Argon at 0.5 torr, with an applied voltage if 1kV. The evolution process of the discharge has been divided into four phases along the potential distribution : (1) Townsend discharge, (2) plasma formation, (3) onset of hollow cathode effect, (4) plasma expansion. From the numerical results, the physical mechanisms that lead to the rapid rise in current associated with the onset of pseudospark could be identified.

  • PDF

Domain Decomposition Strategy for Pin-wise Full-Core Monte Carlo Depletion Calculation with the Reactor Monte Carlo Code

  • Liang, Jingang;Wang, Kan;Qiu, Yishu;Chai, Xiaoming;Qiang, Shenglong
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.635-641
    • /
    • 2016
  • Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

Monte Carlo Simulation for Particle Behavior of Recycling Neutrals in a Tokamak Diverter Region

  • Kim, Deok-Kyu;Hong, Sang-Hee;Kihak Im
    • Nuclear Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.459-467
    • /
    • 1997
  • The steady-state behavior of recycling neutral atoms in a tokamak edge region has been analyzed through a two-dimensional Monte Carlo simulation. A particle tracking algorithm used in earlier research on the neutral particle transport is applied to this Monte Carlo simulation in order to perform more accurate calculations with the EDGETRAN code which was previously developed for a two-dimensional edge plasma transport in the authors' laboratory. The physical model of neutral recycling includes charge-exchange and ionization interactions between plasmas and neutral atoms. The reflection processes of incident particles on the device wall are described by empirical formulas. Calculations for density, energy, and velocity distributions of neutral deuterium-tritium atoms have been carried out for a medium-sized tokamak with a double-null configuration based on the KT-2 conceptual design. The input plasma parameters such as plasma density, ion and electron temperatures, and ion fluid velocity are provided from the EDGETRAN calculations. As a result of the present numerical analysis, it is noticed that a significant drop of the neutral atom density appears in the region of high plasma density and that the similar distribution of neutral energy to that of plasma ions is present as frequently reported in other studies. Relations between edge plasma conditions and the neutral recycling behavior are discussed from the numerical results obtained herein.

  • PDF

MCCARD: MONTE CARLO CODE FOR ADVANCED REACTOR DESIGN AND ANALYSIS

  • Shim, Hyung-Jin;Han, Beom-Seok;Jung, Jong-Sung;Park, Ho-Jin;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • 제44권2호
    • /
    • pp.161-176
    • /
    • 2012
  • McCARD is a Monte Carlo (MC) neutron-photon transport simulation code. It has been developed exclusively for the neutronics design of nuclear reactors and fuel systems. It is capable of performing the whole-core neutronics calculations, the reactor fuel burnup analysis, the few group diffusion theory constant generation, sensitivity and uncertainty (S/U) analysis, and uncertainty propagation analysis. It has some special features such as the anterior convergence diagnostics, real variance estimation, neutronics analysis with temperature feedback, $B_1$ theory-augmented few group constants generation, kinetics parameter generation and MC S/U analysis based on the use of adjoint flux. This paper describes the theoretical basis of these features and validation calculations for both neutronics benchmark problems and commercial PWR reactors in operation.

Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-I: Theory and Method

  • Lee, Yoonhee;Cho, Bumhee;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.650-659
    • /
    • 2016
  • As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

지하 LPG 저장공동의 기밀성평가를 위한 분리열극개념의 지하수유동 및 용질이동 모형 모의기법 적용 (Application of A Discrete Fracture Flow and Mass Transport Simulation Technique Assessing Tightness Criteria for Underground LPG Storage Cavern)

  • 한일영;조성만;정광필
    • 지질공학
    • /
    • 제5권2호
    • /
    • pp.155-165
    • /
    • 1995
  • 열극암반내의 지하수유동 및 용질이동 해석을 위해서는 추계론적인(Simulation Techique) 3차원 불연속체 모형(Discrete Fracture Model)이 요구된다. Monte Carlo 모의기법(Simulation Techique)에 의해 구성된 추계론적 불연속체모형을 지하 유류저장공동의 기밀성평가를 위한 지하수유동 및 용질이동 모의에 적용하였다. 불연속체모형구성에 영향을 미치는 열극 특성요소는 방향서 및 크기로 분석되었으며, 구성도니 모형(Model)에서의 지하수유동에 영향을 미치는 요소는 투수성 열극밀도로 분석되었다. Particle Tracking 기법을 사용한 불연속체모형의 용질이동 모의에서는 열극의 투수성에 의해 이동경로 및 이동속도에 많은 차이가 관찰되었다. 검증된 추계론적 불연속체모형은 지하 유류저장공동 기밀성평가에 적용이 가능함이 부분적으로 인정되었다.

  • PDF