• Title/Summary/Keyword: Monte Carlo N-Particle (MCNP)

Search Result 39, Processing Time 0.021 seconds

Preliminary Study of Cosmic-ray Shielding Material Design Using Monte-Carlo Radiation Transport Code (몬테카를로 방사선 수송 모델을 활용한 우주방사선 차폐체 설계 관련 선행연구)

  • Kang, Chang-Woo;Kim, Yeong-Chan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.527-536
    • /
    • 2022
  • The radiation shielding characteristic of neutron shielding material has been studied as the preliminary study in order to design cosmic-ray shielding material. Specially, Soft Magnetic Material, known to be effective in EMP and radiation shielding, has been investigated to check if the material would be applicable to cosmic-ray shielding. In this work, thermal neutron shielding experiment was conducted and the Monte Carlo N-Particle(MCNP) was applied to employ skymap.dat, which is cosmic-ray data embedded in MCNP. As a result, polyethylene, borated polyethylene, and carbon nano tube, containing carbon or hydrogen, have been found to be effective in reduction of neutron flux below 20 MeV (including thermal, epithermal, evaporation). In contrast, the materials composed of iron such as SS316 and Soft Magnetic Material show a good shielding performance in the cascade energy range (above 20 MeV). Since Soft Magnetic Material is consisting of 13% of boron, it can also decrease thermal neutron flux, so it is expected that it would show a significant reduction on the entire range of neutron energy if the Soft Magnetic Material is used with hydrogen and carbon, so called low Z material.

A study on slim-hole density logging based on numerical simulation (소구경 시추공에서의 밀도검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.227-234
    • /
    • 2012
  • In this study, we make simulation of density log using a Monte Carlo N-Particle (MCNP) algorithm to make an analysis on density logging under different borehole environments, since density logging is affected by various borehole conditions like borehole size, density of borehole fluid, thickness and type of casing, and so on. MCNP algorithm has been widely used for simulation of problems of nuclear particle transportation. In the simulation, we consider the specific configuration of a tool (Robertson Geologging Co. Ltd) that Korea institute of geoscience and mineral resources (KIGAM) has used. In order to measure accurate bulk density of a formation, it is essential to make a calibration and correction chart for the tool under considerations. Through numerical simulation, this study makes calibration plot of the density tool in material with several known bulk densities and with boreholes of several different diameters. In order to make correction charts for the density logging, we simulate and analyze measurements of density logging under different borehole conditions by considering borehole size, density of borehole fluid, and presence of casing.

Investigating Dynamic Parameters in HWZPR Based on the Experimental and Calculated Results

  • Nasrazadani, Zahra;Behfarnia, Manochehr;Khorsandi, Jamshid;Mirvakili, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1120-1125
    • /
    • 2016
  • The neutron decay constant, ${\alpha}$, and effective delayed neutron fraction, ${\beta}_{eff}$, are important parameters for the control of the dynamic behavior of nuclear reactors. For the heavy water zero power reactor (HWZPR), this document describes the measurements of the neutron decay constant by noise analysis methods, including variance to mean (VTM) ratio and endogenous pulse source (EPS) methods. The measured ${\alpha}$ is successively used to determine the experimental value of the effective delayed neutron fraction as well. According to the experimental results, ${\beta}_{eff}$ of the HWZPR reactor under study is equal to 7.84e-3. This value is finally used to validate the calculation of the effective delayed neutron fraction by the Monte Carlo methods that are discussed in the document. Using the Monte Carlo N-Particle (MCNP)-4C code, a ${\beta}_{eff}$ value of 7.58e-3 was obtained for the reactor under study. Thus, the relative difference between the ${\beta}_{eff}$ values determined experimentally and by Monte Carlo methods was estimated to be < 4%.

A study on slim-hole neutron logging based on numerical simulation (소구경 시추공에서의 중성자검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.219-226
    • /
    • 2012
  • This study provides an analysis on results of neutron logging for various borehole environments through numerical simulation based on a Monte Carlo N-Particle (MCNP) code developed and maintained by Los Alamos National Laboratory. MCNP is suitable for the simulation of neutron logging since the algorithm can simulate transport of nuclear particles in three-dimensional geometry. Rather than simulating a specific tool of a particular service company between many commercial neutron tools, we have constructed a generic thermal neutron tool characterizing commercial tools. This study makes calibration chart of the neutron logging tool for materials (e.g., limestone, sandstone and dolomite) with various porosities. Further, we provides correction charts for the generic neutron logging tool to analyze responses of the tool under various borehole conditions by considering brine-filled borehole fluid and void water, and presence of borehole fluid.

Evaluation of the medical staff effective dose during boron neutron capture therapy using two high resolution voxel-based whole body phantoms

  • Golshanian, Mohadeseh;Rajabi, Ali Akbar;Kasesaz, Yaser
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1505-1512
    • /
    • 2017
  • Because accelerator-based boron neutron capture therapy (BNCT) systems are planned for use in hospitals, entry into the medical room should be controlled as hospitals are generally assumed to be public and safe places. In this paper, computational investigation of the medical staff effective dose during BNCT has been performed in different situations using Monte Carlo N-Particle (MCNP4C) code and two voxel based male phantoms. The results show that the medical staff effective dose is highly dependent on the position of the medical staff. The results also show that the maximum medical staff effective dose in an emergency situation in the presence of a patient is ${\sim}25.5{\mu}Sv/s$.

An Analysis on Response Characteristics of a Dual Neutron Logging using Monte Carlo Simulation (Monte Carlo 모델링을 이용한 이중 중성자검층 반응 특성 분석)

  • Won, Byeongho;Hwang, Seho;Shin, Jehyun
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Monte Carlo N-Particle (MCNP) modeling algorithm based on the Monte Carlo method was used to perform the simulation of neutron logging in order to increase the reliability and utilization of neutron logs applied in geological and resource engineering fields. To perform the simulation using MCNP, we used a realistic three-dimensional configuration of neutron sonde and formation. Validation of the modeling was confirmed by comparing the calibration curves of sonde manufacture with those calculated by MCNP modeling. After the validation, lithology effects, pore fluid effects, borehole diameter change, casing effect, and effects of borehole water level were investigated through modeling experiments. Numerical tests indicate that changes in neutron count ratio according to the lithology were quantitatively understood. In case of a borehole with a diameter of 3 inches, ratio of counting rates was higher than expected to be interpreted as borehole fluid has small effects on neutron logging. Effect of casing was also small in general, particular when porosity increases. Since modeling results above the groundwater level showed a tendency opposite to those below the groundwater level, neutron logs can be used to detect groundwater level. The modeling results simulated in this study for various borehole environments are expected to be used for data processing and interpretation of neutron log.

Analysis of Radiation Shielding Effect of Soft Magnetic Material applied to Military Facility (경량 연자성 소재의 군 시설물 적용 시 방사선 차폐효과 분석)

  • Lee, Sangkyu;Lee, Sangmin;Choi, Gyoungjun;Lee, Byounghwak
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • The purpose of this research is to analyze the radiation shielding effect of soft magnetic material to confirm the applicability to the military facilities. The soft magnetic material is known to be effective in shielding EMP. If this material is also effective in radiation shielding, it is expected that it has a lot of applicability in military protection. In particular, this material contains boron, so it will be effective in shielding neutrons. In this research, experiments were conducted using Cs-137 and Co-60 sources to check the gamma ray shielding effect. In addition, the Monte Carlo N-Particle(MCNP) modeling was applied to evaluate the gamma ray and neutron shielding effect of a military command tent. As a result, as the soft magnetic thickness increased, the shielding performance improved according the linear attenuation law of gamma ray and neutron. Therefore, this research verified that the application of soft magnetic material for military purposes in radiation shielding would be effective.

Evaluation of Neutron Shielding Performance of Polyethylene Coated Boron Carbide-Incorporated Cement Paste using MCNP Simulation (MCNP 시뮬레이션을 통한 폴리에틸렌 코팅 탄화붕소 혼입 시멘트 페이스트의 중성자 차폐 성능 평가)

  • Park, Jae-Yeon;Jee, Hyeon-Seok;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.114-115
    • /
    • 2018
  • To develop an effective shielding material for spent fuel that emits fast neutrons is necessary. In this study, thermal neutron and fast neutron shielding performance of polyethylene coated boron carbide-incorporated cement paste was quantitatively analyzed by Monte Carlo N-Particle transport code (MCNP) simulations. As the results of the simulations, fast neutrons were effectively shielded through large quantity of hydrogen and boron elements in polyethylene and boron carbide.

  • PDF

Determining PGAA collimator plug design using Monte Carlo simulation

  • Jalil, A.;Chetaine, A.;Amsil, H.;Embarch, K.;Benchrif, A.;Laraki, K.;Marah, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.942-948
    • /
    • 2021
  • The aim of this work is to help inform the decision for choosing a convenient material for the PGAA (Prompt Gamma Activation Analysis) collimator plug to be installed at the tangential channel of the Moroccan Triga Mark II Research Reactor. Two families of materials are usually used for collimator construction: a mixture of high-density polyethylene (HDPE) with boron, which is commonly used to moderate and absorb neutrons, and heavy materials, either for gamma absorption or for fast neutron absorption. An investigation of two different collimator designs was performed using N-Particle Monte Carlo MCNP6.2 code with the ENDF/B-VII.1 and MCLIP84 libraries. For each design, carbon steel and lead materials were used separately as collimator heavy materials. The performed study focused on both the impact on neutron beam quality and the neutron-gamma background at the exit of the collimator beam tube. An analysis and assessment of the principal findings is presented in this paper, as well as recommendations.

An Assessment of the Secondary Neutron Dose in the Passive Scattering Proton Beam Facility of the National Cancer Center

  • Han, Sang-Eun;Cho, Gyuseong;Lee, Se Byeong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.801-809
    • /
    • 2017
  • The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a $^3He$ neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from $4.942{\pm}0.031mSv/Gy$ at the end of the field to $0.324{\pm}0.006mSv/Gy$ at 150 cm in axial distance.