• Title/Summary/Keyword: Monte Carlo EM

Search Result 23, Processing Time 0.017 seconds

Distributed Target Localization with Inaccurate Collaborative Sensors in Multipath Environments

  • Feng, Yuan;Yan, Qinsiwei;Tseng, Po-Hsuan;Hao, Ganlin;Wu, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2299-2318
    • /
    • 2019
  • Location-aware networks are of great importance for both civil lives and military applications. Methods based on line-of-sight (LOS) measurements suffer sever performance loss in harsh environments such as indoor scenarios, where sensors can receive both LOS and non-line-of-sight (NLOS) measurements. In this paper, we propose a data association (DA) process based on the expectation maximization (EM) algorithm, which enables us to exploit multipath components (MPCs). By setting the mapping relationship between the measurements and scatters as a latent variable, coefficients of the Gaussian mixture model are estimated. Moreover, considering the misalignment of sensor position, we propose a space-alternating generalized expectation maximization (SAGE)-based algorithms to jointly update the target localization and sensor position information. A two dimensional (2-D) circularly symmetric Gaussian distribution is employed to approximate the probability density function of the sensor's position uncertainty via the minimization of the Kullback-Leibler divergence (KLD), which enables us to calculate the expectation step with low computational complexity. Moreover, a distributed implementation is derived based on the average consensus method to improve the scalability of the proposed algorithm. Simulation results demonstrate that the proposed centralized and distributed algorithms can perform close to the Monte Carlo-based method with much lower communication overhead and computational complexity.

Bayesian analysis of finite mixture model with cluster-specific random effects (군집 특정 변량효과를 포함한 유한 혼합 모형의 베이지안 분석)

  • Lee, Hyejin;Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.57-68
    • /
    • 2017
  • Clustering algorithms attempt to find a partition of a finite set of objects in to a potentially predetermined number of nonempty subsets. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet prior distribution calculates posterior probabilities when the number of clusters was known. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. Examples are given to show how these models perform on real data.

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.