• Title/Summary/Keyword: Monsoon season

Search Result 152, Processing Time 0.033 seconds

Region-Scaled Soil Erosion Assessment using USLE and WEPP in Korea

  • Kim, Min-Kyeong;Jung, Kang-Ho;Yun, Sun-Gang;Kim, Chul-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.314-320
    • /
    • 2008
  • During the summer season, more than half of the annual precipitation in Korea occurs during the summer season due to the geographical location in the Asian monsoon belt. So, this causes severe soil erosion from croplands, which is directly linked to the deterioration of crop/land productivity and surface water quality. Therefore, much attention has been given to develop accurate estimation tools of soil erosion. The aim of this study is to assess the performance of using the empirical Universal Soil Loss Equation (USLE) and the physical-based model of the Water Erosion Prediction Project (WEPP) to quantify eroded amount of soil from agricultural fields. Input data files, including climate, soil, slope, and cropping management, were modified to fit into Korean conditions. Chuncheon (forest) and Jeonju (level-plain) were selected as two Korean cities with different topographic characteristics for model analysis. The results of this current study indicated that better soil erosion prediction can be achieved using the WEPP model since it has better power to illustrate a higher degree of spatial variability than USLE in topography, precipitation, soils, and crop management practices. These present findings are expected to contribute to the development of the environmental assessment program as well as the conservation of the agricultural environment in Korea.

Quantifying the effects of climate variability and human activities on runoff for Vugia - Thu Bon River Basin in Central of Viet Nam

  • Lan, Pham Thi Huong;Thai, Nguyen Canh;Quang, Tran Viet;Long, Ngo Le
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.233-233
    • /
    • 2015
  • Vu Gia - Thu Bon basin is located in central Vietnam between Truong Son mountain range on the border with Lao in the west and the East Sea in the east. The basin occupies about 10,350 km2 or roughly 90% of the Quang Nam Province and includes Da Nang, a very large city with about 876,000 inhabitants. Total annual rainfall ranges from about 2,000 mm in central and downstream areas to more than 4,000 mm in southern mountainous areas. Rainfall during the monsoon season accounts for 65 to 80% of total annual rainfall. The highest amount of rainfall occurs in October and November which accounts for 40 to 50% of the annual rainfall. Rainfall in the dry season represents about 20 to 35% of the total annual rainfall. The low rainfall season usually occurs from February to April, accounting for only 3 to 5% of the total annual rainfall. The mean annual flow volume in the basin is $19.1{\times}109m 3$. Similar to the distribution of rainfall, annual flows are distinguished by two distinct seasons (the flood season and the low-flow season). The flood season commonly starts in the mid-September and ends in early January. Flows during the flood season account for 62 to 69% of the total annual water volume, while flows in the dry season comprise 22 to 38% of total annual run-off. The water volume gauged in November, the highest flow month, accounts for 26 to 31% of the total annual run-off while the driest period is April with flows of 2 to 3% of the total annual run-off. There are some hydropower projects in the Vu Gia - Thu Bon basin as the cascade of Song Bung 2, Song Bung 4, and Song Bung 5, the A Vuong project currently under construction, the Dak Mi 1 and Dak Mi 4 projects on the Khai tributary, and the Song Con project on the Con River. Both the Khai tributary and the Song Con join the Bung River downstream of SB5, although the Dak Mi 4 project involves an inter-basin diversion to Thu Bon. Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Vu Gia - Thu Bon River Basin in the central of Viet Nam were analyzed to investigate changes in annual runoff during the period of 1977-2010. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. The hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  • PDF

A study on the characteristics of landslide in heavy rainfall (a study by rock types) (폭우시 산사태 특성에 관한 연구 (암종에 따른 특성 연구))

  • 이수곤;박지호;선건규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.131-136
    • /
    • 2003
  • Landslide is a natural disaster frequently noticed In korea during monsoon season in flicting nationwise damages on human lives, properties, transportation networks, construction sites, etc. This study is about landslide characteristic in rainfall. This study selects seven sites that occured in 2001 and 2002. So elect areas divide and studied special quality by carcinoma by igneous rock, metamorphic rock, sedimentary rock. According to study finding, because igneous rock area is very thin into 1m interior and exterior soil layer, failures happened much rock and soil interface. There was place that depth of soil layer becomes about 2∼3m being area that receive serious weathering case of metamorphic rock. Therefore, at collapse much debriflow occurrence expect. Case that sedimentary rock area is broken through stratification looked. When see such results, it may become many helps to study characteristics of landslide occurrence area grasping collapse special quality by rock type.

  • PDF

FEED AND FODDER AVAILABILITY IN THE PABNA MILK SHED AREA, BANGLADESH

  • Islam, M.;Sarker, N.R.;Islam, M.M.;Yasmin, L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.301-305
    • /
    • 1995
  • The study was conducted at village level in Pabna milkshed areas of Bangladesh to asses the existing feed and fodder sources of cattle. The results showed that the overall number of cattle per farm family was 7.17 and chicken represents highest number (15.57) per farm family in this area. The results also indicated that during monsoon season the bathan is planted with Vigna mungo and Lathyrus sativus and average grazing hours per day varied from 1.1 in October to 5.6 in February. In Summer, they were offered naturally grown Cynodon dactylon with supplementary feeding of rice straw. The study further showed that the highest (65.7%) feed scarcity was found during mid April to mid May followed by mid June. The cultivation of Vigna mungo was highest (76.71%) compared to Lathyrus sativus by the farmers in the bathan areas. The major constraint to cattle production is the scarcity of quality feed during mid October to mid November.

Prediction of Potential Landslide Sites Using Determinitstic Model (결정론적 기법을 이용한 산사태 위험지 예측)

  • Cha, Kyung-Seob;Chang, Pyoung-Wuck;Woo, Chull-Woong;Kim, Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.37-45
    • /
    • 2005
  • Almost every year, Korea has been suffered from serious damages of lives and properties, due to landslides that are triggered by heavy rains in monsoon season. In this paper, we systematized the physically based landslide prediction model which consisted of 3 parts, infinite slope stability analysis model, groundwater flow model and soil depth model. To evaluate its applicability to the prediction of landslides, the data of actual landslides were plotted on the predicted areas on the GIS map. The matching rate of this model to the actual data was $84.8\%$. And the relation between hydrological and land form factors and potential landslide were analyzed.

Monthly Wind Stress and Wind Stress Curl Distributions in the Eastern Sea(Japan Sea) (동해상의 월별 바람응력 및 바람응력컬 분포)

  • 김철호;최병호
    • Water for future
    • /
    • v.19 no.3
    • /
    • pp.239-248
    • /
    • 1986
  • Monthly wind stress, wind stress curl and volume transport stream functions are computed in the Eastern Sea(Japan Sea) based upon observed wind and atmospheric pressure data respectively. The presented two results show different distributios on locality and season but as common features the results reveal the northwesterly surface wind stress \ulcorner 새 the monsoon in winter, south to southwesterly wind stress \ulcorner 새 the southerly wind in summer and strond anticyclonic curl in the northern part on the Eastern Sea(Japan Sea) in winter. In the distributions obtained from the sea level atmospheric pressure data, the maximum value of the wind stress and of curls of small scales are shown off the southeast coast of Siberia and northeast coast of Korea. Volume transport distributions obtained from the Sverdrup relationship suggest that the strong northward boundary current can be formed along the northeast coast of Korea in winter and weak southward boundary current in summer.

  • PDF

What means Changma in KOREA? (우리나라 장마에 대한 소고)

  • Ryoo, Sang-Boom;Oh, Jai-Ho;Lee, Jin-Suk;Lee, Kyoung-Min
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.1
    • /
    • pp.18-26
    • /
    • 2005
  • The East Asian summermonsoon is generally accompanied with the quasi-stationary front along the northern and northwestern periphery of the subtropical Northwest Pacific high. The rainy season in Korea has been called as Changma since the middle of 1500s. Understanding of Changma and heavy rainfall advancing along the Changma front is one of main interesting of Korean meteorologists. This study briefly summarized the descriptive characteristics of Changma and its relatedmechanism, definitions on the Changma period, and etymology of Changma through reviewing the previous studies on Changma.

  • PDF

A New Look at Changma (장마의 재조명)

  • Seo, Kyong-Hwan;Son, Jun-Hyeok;Lee, June-Yi
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.109-121
    • /
    • 2011
  • This study revisits the definition of Changma, which is the major rainy season in Korea and corresponds to a regional component of the East Asian summer monsoon system. In spite of several decades of researches on Changma, questions still remain on many aspects of Changma that include its proper definition, determination of its onset and retreat, and relevant large-scale dynamical and thermodynamical features. Therefore, this study clarifies the definition of Changma (which is a starting point for the study of interannual and interdecadal variability) using a basic concept of air mass and front by calculating equivalent potential temperature (${\theta}_e$) that considers air temperature and humidity simultaneously. A negative peak in the meridional gradient of this quantity signifies the approximate location of Changma front. This front has previously been recognized as the boundary between the tropical North Pacific air mass and cold Okhotsk sea air mass. However, this study identifies three more important air masses affecting Changma: the tropical monsoon air mass related to the intertropical convergence zone over Southeast Asia and South China Sea, the tropical continental air mass over North China, and intermittently polar continental air mass. The variations of these five air masses lead to complicated evolution of Changma and modulate intensity, onset and withdrawal dates, and duration of Changma on the interannual time scale. Importantly, use of ${\theta}_e$, 500-hPa geopotential height and 200 hPa zonal wind fields for determining Changma onset and withdrawal dates results in a significant increase (up to~57%) in the hindcast skill compared to a previous study.

Stratified features in Paldang lake considering induced density currents and seasonal thermal effect (유입하천 밀도와 계절별 수온을 고려한 팔당호 성층 해석)

  • Choi, Suin;Kim, Dongsu;Seo, Ilwon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.99-110
    • /
    • 2024
  • Paldang Reservoir serves as a crucial water source for the metropolitan area, and national efforts are focused on water quality management. The region near Paldang Dam, where the water intake facility with the greatest depth is located, experiences vertical stratification during the summer. It has been challenging to definitively classify whether this stratification is caused by density currents or summer temperatures. This study aimed to differentiate and analyze stratification due to density currents and temperature variations at key locations in the Paldang Reservoir through vertical water quality measurements. The results allowed us to distinguish between density current and temperature-induced stratification. We found that density currents are primarily caused by temperature differences among inflowing rivers, with flow velocity significantly influencing their persistence. Additionally, based on a combination of monsoon and non-monsoon season characteristics, we classified Paldang Reservoir into regions with distinct river and lake traits.

Spatio-temporal Variation Analysis of Physico-chemical Water Quality in the Yeongsan-River Watershed (영산강 수계의 이화학적 수질에 관한 시공간적 변이 분석)

  • Kang, Sun-Ah;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.73-84
    • /
    • 2006
  • The objective of this study was to analyze long-term temporal trends of water chemistry and spatial heterogeneity for 10 sampling sites of the Yeongsan River watershed using water quality dataset during 1995 to 2004 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of biological oxygen demand (BOD), chemical oxygen demand (COD), conductivity, dissolved oxygen (Do), total phosphorus (TP), total nitrogen (TN) and total suspended solids (TSS), largely varied depending on the sampling sites, seasons and years. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summmer monsoon rain. Conductivity, used as a key indicator for a ionic dilution during rainy season, and nutrients of TN and TP had an inverse function of precipitation (absolute r values> 0.32, P< 0.01, n= 119), whereas BOD and COD had no significant relations(P> 0.05, n= 119) with rainfall. Minimum values in conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of total suspended solids (TSS) occurred during the period of summer monsoon. BOD values varied with seasons and the values was closely associated (r=0.592: P< 0.01) with COD, while variations of TN were had high correlations (r=0.529 : P< 0.01) with TP. Seasonal fluctuations of DO showed that maximum values were in the cold winter season and minimum values were in the summer seasons, indicating an inverse relation with water temperature. The spatial trend analyses of TP, TN, BOD, COD and TSS, except for conductivity, showed that the values were greater in the mid-river reach than in the headwater and down-river reaches. Conductivity was greater in the down-river sites than any other sites. Overall data of BOD, COD, and nutrients (TN, TP) showed that water quality was worst in the Site 4, compared to those of others sites. This was due to continuous effluents from the wastewater treatment plants within the urban area of Gwangju city. Based on the overall dataset, efficient water quality management is required in the urban area for better water quality.