• Title/Summary/Keyword: Monsoon region

Search Result 114, Processing Time 0.027 seconds

Future Projection and Analysis of Water Resources on Megacity in Asian Monsoon Region (아시아 몬순지역 메가시티의 미래 수자원 전망 및 분석)

  • Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • 전 세계적인 인구증가와 도시화로 메가시티가 점차 증가하고 있으며, 2016년 기준 37개의 메가시티 중 60% 이상(23개)이 아시아 지역에 집중되어 있다. 통상, 메가시티는 불투수율이 높고 인구가 밀집되어 있어 수재해로 인한 피해규모가 크며, 인구증가에 따른 용수부족 및 수질악화로 인해 수자원 확보가 어렵다. 특히, 아시아 지역은 몬순의 영향으로 수자원의 변동성이 크며, 최근 기후시스템의 변화는 몬순의 시 공간적 변동을 증대시킬 것으로 전망된다. 즉, 아시아 몬순지역에 위치하는 메가시티는 기후변화에 더욱 취약하며 이에 따른 수자원 확보 및 수자원 관리의 어려움은 더욱 가중될 것으로 예상된다. 본 연구에서는 AR5 기후변화 시나리오를 활용하여 아시아 몬순지역 내 메가시티를 대상으로 미래기간에 대한 기온, 강수량, 유출량을 전망하고 그 특성을 분석하고자 한다. 국가별 인구 통계자료를 기반으로 아시아 몬순지역 내 존재하는 19개 메가시티를 선정하였다. 기후전망을 위해 테일러 다이어그램을 활용하여 GCMs의 몬순모의 성능을 평가하였으며, 아시아 몬순특성을 잘 반영하는 다수의 GCMs을 선정하였다. 아시아 메가시티를 평가하고자 이중선형보간기법(Bilinear method)을 적용하여 $0.5^{\circ}$ 간격의 공간해상도로 상세화하였으며, Delta method를 이용하여 편의보정을 수행하였다. GCM 모의자료의 편의를 산정하기 위해 APHRODITE의 일단위 강수자료를 이용하였으며, VIC (Variable Infiltration Capacity) 모형을 이용하여 유출량 분석을 수행하였다. 평가결과 각 메가시티의 평균기온, 강수 및 유출량이 모든 미래기간 2020s, 2050s, 2080s에서 다르게 나타났다. 해안/내륙, 경 위도 등 메가시티의 지리적 위치에 따른 변화특성 분석을 수행하였으며, 각 메가시티에 대한 여름 및 겨울철 몬순의 변화 특성을 분석하였다.

  • PDF

Assessment of the Prediction Derived from Larger Ensemble Size and Different Initial Dates in GloSea6 Hindcast (기상청 기후예측시스템(GloSea6) 과거기후 예측장의 앙상블 확대와 초기시간 변화에 따른 예측 특성 분석)

  • Kim, Ji-Yeong;Park, Yeon-Hee;Ji, Heesook;Hyun, Yu-Kyung;Lee, Johan
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, the evaluation of the performance of Korea Meteorological Administratio (KMA) Global Seasonal forecasting system version 6 (GloSea6) is presented by assessing the effects of larger ensemble size and carrying out the test using different initial conditions for hindcast in sub-seasonal to seasonal scales. The number of ensemble members increases from 3 to 7. The Ratio of Predictable Components (RPC) approaches the appropriate signal magnitude with increase of ensemble size. The improvement of annual variability is shown for all basic variables mainly in mid-high latitude. Over the East Asia region, there are enhancements especially in 500 hPa geopotential height and 850 hPa wind fields. It reveals possibility to improve the performance of East Asian monsoon. Also, the reliability tends to become better as the ensemble size increases in summer than winter. To assess the effects of using different initial conditions, the area-mean values of normalized bias and correlation coefficients are compared for each basic variable for hindcast according to the four initial dates. The results have better performance when the initial date closest to the forecasting time is used in summer. On the seasonal scale, it is better to use four initial dates, where the maximum size of the ensemble increases to 672, mainly in winter. As the use of larger ensemble size, therefore, it is most efficient to use two initial dates for 60-days prediction and four initial dates for 6-months prediction, similar to the current Time-Lagged ensemble method.

A Review of Recent Climate Trends and Causes over the Korean Peninsula (한반도 기후변화의 추세와 원인 고찰)

  • An, Soon-Il;Ha, Kyung-Ja;Seo, Kyong-Hwan;Yeh, Sang-Wook;Min, Seung-Ki;Ho, Chang-Hoi
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.237-251
    • /
    • 2011
  • This study presents a review on the recent climate change over the Korean peninsula, which has experienced a significant change due to the human-induced global warming more strongly than other regions. The recent measurement of carbon dioxide concentrations over the Korean peninsula shows a faster rise than the global average, and the increasing trend in surface temperature over this region is much larger than the global mean trend. Recent observational studies reporting the weakened cold extremes and intensified warm extremes over the region support consistently the increase of mean temperature. Surface vegetation greenness in spring has also progressed relatively more quickly. Summer precipitation over the Korean peninsula has increased by about 15% since 1990 compared to the previous period. This was mainly due to an increase in August. On the other hand, a slight decrease in the precipitation (about 5%) during Changma period (rainy season of the East Asian summer monsoon), was observed. The heavy rainfall amounts exhibit an increasing trend particularly since the late 1970s, and a consecutive dry-day has also increased primarily over the southern area. This indicates that the duration of precipitation events has shortened, while their intensity became stronger. During the past decades, there have been more stronger typhoons affecting the Korean peninsula with landing more preferentially over the southeastern area. Meanwhile, the urbanization effect is likely to contribute to the rapid warming, explaining about 28% of total temperature increase during the past 55 years. The impact of El Nino on seasonal climate over the Korean peninsula has been well established - winter [summer] temperatures was generally higher [lower] than normal, and summer rainfall tends to increase during El-Nino years. It is suggested that more frequent occurrence of the 'central-Pacific El-Nino' during recent decades may have induced warmer summer and fall over the Korean peninsula. In short, detection and attribution studies provided fundamental information that needed to construct more reliable projections of future climate changes, and therefore more comprehensive researches are required for better understanding of past climate variations.

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

Ecological Characteristics and Distribution of Fish in the Downstream Region of Gyeongan Stream (경안천 하류구간에 서식하는 어류의 분포 및 생태특성)

  • Lee, Eui-Haeng;Kim, Mirinae;Kim, Hyun-Mac;Son, Misun;Chang, Kwang-Hyeon;Nam, Gui-Sook
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • Fish field survey, especially fish distribution and their ecological characteristics, was performed in the downstream region of Gyeongan stream during the period of before (June) and after (October) the summer monsoon in 2010. Depending on the characteristics of each site, fyke net or casting net was used for fish sampling. Feeding classification was determined by the analysis of stomach contents. Total number of family and species sampled were 5 and 17, respectively. The dominant family was Cyprinidae (12 species), and relative abundance (RA) of the most dominant species, Lepomis macrochirus and Zacco platypus, was 38% and 24%, respectively. Exotic species and Korean endemic species observed were 3 (423 individuals, RA 44%) and 4 (98 individuals, RA 10%), respectively. Tolerance guild analysis as characteristics of ecological indicators revealed an undoubtedly high percentage (97%), compared to others as reflected by the identification of just one sensitive species. Analysis of trophic guilds showed that L. macrochirus dominated among insectivores (44% RA). The food of L. macrochirus composed of, aquatic insects, benthic invertebrates, zooplankton, Chironomidae, and waterweed. Thus, we determined that L. macrochirus could be classified as insectivores (partially carnivores) in this study. Conversely, Z. platypus consumed Cladocera exclusively, greater than 90% of their feed. We presume that stable isotope analysis would identify the exact position of these species in the food web.

Change of Coastal Upwelling Index along the Southeastern Coast of Korea (동해 남부 연안용승지수의 변화)

  • SHIN, CHANG-WOONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • Long-term trends and recent variations of upwelling index (UI), which affects significantly ecosystem in southwestern part of the East Sea, were investigated. The UI was calculated with the NCEP/NCAR reanalysis data from January 1948 to September 2018. The mean UI has positive value that causes upwelling in April to August with a peak in July. The long-term reducing trend of UI was in statistically significant in June and July, and the sum of UI in May, June and July also showed same result. Through the atmospheric pressure analysis around the Korean peninsula, it was found that the trend of the UI was the influence of the pressure change trend in the northwestern region ($35-50^{\circ}N$, $114-129^{\circ}E$) of the southwestern part of the East Sea. Investigating UI in recent 7 years from 2012 to 2018, it was revealed that the UI was bigger than 3 times of standard deviation in July 2013. This was result from the sea level pressure difference became larger in the southwestern part of the East Sea than normal year due to the lowered air pressure in the northeastern region of China and the strengthened high air pressure of western peripheral of the North Pacific High. On the other hand, the UI in July 2018 was negative when the impact of the North Pacific High and the low air pressure in the northeastern China was weak. Due to the decreasing trend of UI and its large year-to-year variation in southwestern part of the East Sea, continuous monitoring is necessary to know the influence of coastal upwelling on the ecosystem.

Synoptic Analysis on the Trend of Northward Movement of Tropical Cyclone with Maximum Intensity (최대 강도 태풍의 북상 경향에 대한 종관분석)

  • Choi, Ki-Seon;Park, Ki-Jun;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.171-180
    • /
    • 2015
  • Regarding the tropical cyclone (TC) genesis frequency, TCs between 1999 and 2013 were generated more frequently in the northwest waters of the tropical- and subtropical western North Pacific than TCs between 1977 and 1998. TCs over the period from 1977-1998 showed a northward track trend generated mostly from the distant sea in east of the Philippines via the mainland of the Philippines and the South China Sea to the west toward Indochina or from the distant sea in east of the Philippines to the distance sea in east of Japan. TCS over the period from 1999-2013 showed a northward shift pattern to the mid-latitude region mostly in East Asia. Therefore, TCs over the period from 1999-2013 tended to move to much higher latitudes than TCs over the period from 1977-1998, which also resulted in the high possibility of maximum TC intensity occurred in higher latitudes during the former period than the latter period. In the difference of 500 hPa streamline between two periods, the anomalous anticyclonic circulations were strengthened in $30-50^{\circ}N$ whereas the anomalous monsoon trough was placed in north of the South China Sea, which was extended to the east up to $145^{\circ}E$. The mid-latitude in East Asia is affected by the anomalous southeasterlies due to the above anomalous anticyclonic circulations and anomalous monsoon trough. The anomalous southeasterlies play a role in anomalous steering flows that directed TCs to the mid-latitude regions in East Asia, which made the latitudes of the maximum intensities in TCs over the period from 1999 - 2013 further to the north than those in TCs over the period from 1977-1998.

Long Term Variations and Environment Factors of Zooplankton Community in Lake Soyang (소양호 동물플랑크톤 군집의 장기변동과 환경요인: 2003~2014)

  • Kim, Moon Sook;Kim, Bomchul;Jun, Man-Sig
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • Long-term variation of zooplankton community and species composition was studied from 2003 to 2014 in a deep reservoir, Lake Soyang, in monsoon climate region, Korea. In addition, we examined the correlation with environmental factors. Annual precipitation of watershed showed a large variation in the $705{\sim}1,779mm\;yr^{-1}$ and more than 70% of it was being concentrated from June to September. The water quality of Lake Soyang was shown a clearly seasonal variations and particularly turbid water flowing into the lake during rainy season was the most important environmental factors. Zooplankton community in Lake Soyang showed a significant difference before and after 2006. Zooplankton biomass has shown a large increase and also showed a change in the zooplankton community structure since 2006. The of zooplankton showed positive correlation with temperature and BOD, Chl. a, TP concentration. These results are considered that nutrient and organic matter contained in the turbid water influences the increase in zooplankton biomass and species composition. However, water quality was limited to account for the increase in biomass of zooplankton. For example, increase of small zooplankton density (rotifer; Keratella cochlearis, Polyarthra vulgaris) in spring which is dominated by diatoms (large size; Melosira, Synedra etc.) is considered as a bottom-up effect by the microbial loop. And increased density of crustaceans in autumn was considered a top-down effects by the relationship between predator and prey of microzooplankton and mesozooplankton. In other words the inflow of allochthonous organic matter during rainy season also affected to zooplankton food web in Lake Soyang. In conclusion, biomass, diversity and long-term variations of zooplankton in Lake Soyang were determined by physico-chemical factors but also it is considered that biological interactions is important.

Development and Validation of A Decision Support System for the Real-time Monitoring and Management of Reservoir Turbidity Flows: A Case Study for Daecheong Dam (실시간 저수지 탁수 감시 및 관리를 위한 의사결정지원시스템 개발 및 검증: 대청댐 사례)

  • Chung, Se-Woong;Jung, Yong-Rak;Ko, Ick-Hwan;Kim, Nam-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.293-303
    • /
    • 2008
  • Reservoir turbidity flows degrade the efficiency and sustainability of water supply system in many countries located in monsoon climate region. A decision support system called RTMMS aimed to assist reservoir operations was developed for the real time monitoring, modeling, and management of turbidity flows induced by flood runoffs in Daecheong reservoir. RTMMS consists of a real time data acquisition module that collects and stores field monitoring data, a data assimilation module that assists pre-processing of model input data, a two dimensional numerical model for the simulation of reservoir hydrodynamics and turbidity, and a post-processor that aids the analysis of simulation results and alternative management scenarios. RTMMS was calibrated using field data obtained during the flood season of 2004, and applied to real-time simulations of flood events occurred on July of 2006 for assessing its predictive capability. The system showed fairly satisfactory performance in reproducing the density flow regimes and fate of turbidity plumes in the reservoir with efficient computation time that is a vital requirement for a real time application. The configurations of RTMMS suggested in this study can be adopted in many reservoirs that have similar turbidity issues for better management of water supply utilities and downstream aquatic ecosystem.

Application Testing and Comparative Effectiveness of Green-tide Mitigation Technique in the Lower Part (Chusori) of the So-ok Stream (Daecheong Reservoir), Korea (소옥천 하류(추소리)에서 녹조현상 경감기술의 현장 시험 적용 및 효과 비교)

  • Shin, Jae-Ki;Kim, Youngsung;Noh, Joonwoo;Kim, Jong-Myung;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.258-270
    • /
    • 2016
  • This study was conducted to test the green-tide mitigation technique in the lower part of the Sook Stream (Chusori) of Daecheong Reservoir from June 27 to August 24, 2014. And the effects were compared with weekly monitoring result of the watching station of the algae alert system (AAS) as well as test beds reach. The green-tide in a test bed was begun from the upstream, and it was gradually transferred and spread toward the downstream by the hydrological factors. The total amount of algae removed by algae removal device during the test period was 33,920 kg, and solids dewatered by natural gravity was 8,480 kg. Also chlorophyll-a content was 2.83 kg, the number of blue-green algae cells was equivalent to $78.6{\times}10^{14}$ cells. Compared with the results of the watching station of AAS, the pre-concentrate removal work in the outbreak waters was able to suggest the possibility of green-tide mitigation. In addition, an effective management of the green-tide was required spatial and temporal occurrence information and practical device technology. Particularly, the optimal timing of algae removal in the river-reservoir hybrid system was recommended at times before the monsoon rainy season and reached the lowest water level.