• 제목/요약/키워드: Monsoon climate

검색결과 164건 처리시간 0.028초

The Importance and Multifunctions of Korean Paddy Fields

  • Cho Young-Son;Lee Byeong-Jin;Choe Zhin-Ryong
    • 한국작물학회지
    • /
    • 제51권2호
    • /
    • pp.179-185
    • /
    • 2006
  • The Ministry of Agriculture and Forestry announced in 2001 that the overall amount of paddy land set aside for rice will be cut down by 12% by 2005, decreasing from 1.08 million to 953,000 hectares. When evaluating the value of paddy rice systems, the multi-function of paddy systems in the monsoon climate is vital importance. The main functions of paddy rice systems are to conserve biodiversity and maintain sustainability. Some crucial environmental benefits of the paddy rice systems include: flood prevention, recharge of water resources, water purification, soil erosion and landslide prevention, soil purification, landscape preservation and air purification. The paddy rice systems in Korea, which are more diverse than upland crop systems, are known to be composed of 14 orders, 36 families and 134 species. The sustain ability of paddy rice production systems can never be overestimated. Rice is part of the culture and even the heart of spiritual life in the area under the monsoon climate. Therefore paddy rice systems should be preserved with the highest priority being the enhancement of the systems' multi-function. As an outlook to future research, the need of joint and interdisciplinary research projects between economists and natural scientists at inland as well as international levels were emphasized in establishing the development of counter-measure logic through actual proofed analysis.

Water projects and technologies in Asia: Historical perspective

  • Hyoseop Woo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.24-24
    • /
    • 2023
  • This presentation highlights the IAHR book, recently published last April, of which the author is the editor-in-chief, on the historical water projects and traditional water technologies of international interest in the Asian region, addressing information on past water projects (mostly before the 20th century) in the regions that are technically and culturally of interest and educationally valuable. The book explores historical water projects in these regions, presenting technologies used at the time, including calculation and forecasting methods, measurement, material, labor, methodologies, and even water culture. Through this book, it is expected that the old Asian wisdom of "reviewing the old and learning the new" would be realized to a certain extent in modern planning and practice of water projects. The book comprises a lead article that the presenter authored and five Parts representing China, Japan, Korea, South Asia, and Southeast Asia, respectively, followed by an invited one from Uzbekistan. Throughout the book, it is found that historically the Asian monsoon, affecting the Indian subcontinent and Southeast and East Asian regions, induced rice cultivation. It fundamentally needs proper irrigation systems, including reservoirs (dams) and canals, water wheels, and even rain gauges. Flood risks have been more common in Asia than Europe under this climate condition, as recognized in history. To utilize and sometimes overcome these climate conditions, people built and managed many historical and grandiose water projects and invented and used localized but sophisticated water-related technologies in the Asian region.

  • PDF

The Natural Environment during the Last Glacial Maximum Age around Korea and Adjacent Area

  • Yoon, Soon-Ock;Hwang, Sang-Ill
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.33-38
    • /
    • 2003
  • This study is conducted to examine the data of climate or environmental change in the northeastern Asia during the last glacial maximum. A remarkable feature of the 18,000 BP biome reconstructions for China is the mid-latitude extention of steppe and desert biomes to the modem eastern coast. Terrestrial deposits of glacial maximum age from the northern part of Yellow Sea suggest that this region of the continental shelf was occupied by desert and steppe vegetation. And the shift from temperate forest to steppe and desert implies conditions very much drier than present in eastern Asia. Dry conditions might be explained by a strong winter monsoon and/or a weak summer monsoon. A very strong depression of winter temperatures at LGM. has in the center of continent has influenced in northeast Asia similarly. The vegetation of Hokkaido at LGM was subarctic thin forest distributed on the northern area of middle Honshu and cool and temperate mixed forest at southern area of middle Honshu in Japan. The vegetation landscape of mountain- and East coast region of Korea was composed of herbaceous plants with sparse arctic or subarctic trees. The climate of yellow sea surface and west region of Korea was much drier and temperate steppe landscape was extended broadly. It is supposed that a temperate desert appeared on the west coast area of Pyeongan-Do and Cheolla-Do of Korea. The reconstruction of year-round conditions much colder than today right across China, Korea and Japan is consistent with biome reconstruction at the LGM.

  • PDF

기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가 (Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5))

  • 이소정;현유경;이상민;황승언;이조한;부경온
    • 대기
    • /
    • 제30권3호
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

Seasonal Effects on the Performance of Newly Evolved Bivoltine Hybrids of the Silkworm (Bombyx mori L.) Under Tropics

  • Rao, P.Sudhakara;Datta, R.K.;Palit, A.K.;Haque Rufaie, S.Z.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권2호
    • /
    • pp.193-198
    • /
    • 2004
  • Seasonal effects of the newly evolved bivoltine hybrid namely CSR$_2$${\times}$SR$_{5}$, SR$_1$ ${\times}$SR$_4$ and control hybrid KA${\times}$NB$_4$D$_2$ along with their parents SR$_1$, SR$_4$, SR$_{5}$, CSR$_2$ KA and NB$_4$D$_2$ were evaluated during different seasons of the year to understand genotype and environment interactions. Data were collected on five economic importance namely, pupation rate, cocoon yield, cocoon weight, cocoon shell ratio and filament length of the lines, hybrids and the control breeds/hybrid in three different seasons i.e., Pre-Monsoon, Monsoon and post-monsoon and subjected to relevant statistical methods. Seasonal performance of CSR$_2$, SR$_1$, SR$_4$ and SR$_{5}$ revealed superiority over control breeds KA and NB$_4$D$_2$. Both the hybrids i.e., CSR$_2$${\times}$SR$_{5}$ and SR$_1$${\times}$SR$_4$ performed well under diversified environmental conditions of tropical climate in a year indicating overall stability. These hybrids revealed highly significant (P < 0.01) variations for majority of the traits studied over the control hybrid KA${\times}$NB$_4$D$_2$.$.

한국 강수량의 연 변동과 중국 및 일본 강수량과의 비교 연구 (Interannual Variations of the Precipitation in Korea and the Comparison with Those in China and Japan)

  • Jo, Wan-Kuen;Weisel, C.P.
    • 한국환경과학회지
    • /
    • 제4권4호
    • /
    • pp.345-356
    • /
    • 1995
  • Examining the precipitation data collected during the period from 1960 to 1993, we found that Taegu Station represents an optimum station for explaining the interannual variations of the precipitation in Korea. Using the variations derived from Taegu, the secular trends of the precipitation in Korea have been studied. It was 삽so found that the interannual variations of summer monsoon precipitation are consistent with those of the annual precipitation. To explore the interannual variations of the summer monsoon precipitation, comparisons of the summer precipitation in Korea with that in China and Japan were made. The results of the empirical orthogonal function analysis showed that Korea, the Yangtze River and Huaihe River valley, and the south Japan are all located in the same climate system during summer. The detailed analysis was carried out on the comparison of the summer precipitation in Korea with that in the eastern part of the the mainland China. We found that the correlation pattern is similar to the East Asia/pacific pattern. The probable effects of the sea surface temperature on the precipitation in Korea were also discussed. Key Words : Precipitation in Korea, rainy seasons in East Asia, monsoon precipitation, interannual variations.

  • PDF

A Numerical Study on the Formation Mechanism of a Mesoscale Low during East-Asia Winter Monsoon

  • Koo, Hyun-Suk;Kim, Hae-Dong;Kang, Sung-Dae;Shin, Dong-Wook
    • 한국지구과학회지
    • /
    • 제28권5호
    • /
    • pp.613-619
    • /
    • 2007
  • Mesoscale low is often observed over the downstream region of the East Sea (or, northwest coast off the Japan Islands) during East-Asia winter monsoon. The low system causes a heavy snowfall at the region. A series of numerical experiments were conducted with the aid of a regional model (MM5 ver. 3.5) to examine the formation mechanism of the mesoscale low. The following results were obtained: 1) A well-developed mesoscale low was simulated by the regional model under real topography, NCEP reanalysis, and OISST; 2) The mesoscale low was simulated under a zonally averaged SST without topography. This implies that the meridional gradient of SST is the main factor in the formation of a mesoscale low; 3) A thermal contrast ($>10^{\circ}C$) of land-sea and topography-induced disturbance served as the second important factor for the formation; 4) Paektu Mountain caused the surface wind to decelerate downstream, which created a more favorable environment for thermodynamic modification than that was found in a flat topography; and 5) The types of cumulus parameterizations did not affect the development of the mesoscale low.

지역기후모델에서 고해상도 지면피복이 1989년 동아시아 여름몬순 순환에 미치는 영향 (Impacts of the High Resolution Land Cover Data on the 1989 East-Asian Summer Monsoon Circulation in a Regional Climate Model)

  • 서명석;이동규
    • 대기
    • /
    • 제15권2호
    • /
    • pp.75-90
    • /
    • 2005
  • 이 연구에서는 지면-대기 모수화 방안 (BATS1e)이 접합된 미국 국립기상연구센터 (NCAR)에서 개발한 지역기후모델(RegCM2)을 이용하여 지면피복의 변화가 동아시아 여름몬순에 미치는 영향에 대해서 조사하였다. 지면피복 변화의 영향을 분석하기 위하여 두 종류의 지면피복 자료를 이용하였다. 하나는 NCAR에서 제공하는 지면피복 자료 (CTL 실험)이고 다른 하나는 최근의 기상위성자료로부터 직접 분류한 고해상도 지면피복분류 자료(LCV 실험)이다. CTL 실험에서는 중국 중부지역과 몽고지역의 지면온도가 각각 약 $1-3^{\circ}C$ 높고 낮게 모의되었다. 또한 모의 영역 북부지역에서는 강수가 과다하게 모의된 반면 모의영역 남부 바다지역의 강수는 과소하게 모의되었다. 지면피복 변화에 의한 알베도, 거칠기 길이 및 최소기공저항계수와 같은 지면의 생물리적 요소들의 변화는 지면-대기 상호작용을 변경시켰다. 즉, 지면피복이 낙엽활엽수림에서 농지와 관계농지로 변경된 LCV 실험의 중국 중부지역에서는 잠열 속과 풍속이 현저하게 증가되었다. 그 결과 CTL 실험에서 나타났던 중국 중부지역에서의 온난편차가 LCV 실험에서는 대부분 완화되었다. 중국 중부지역에서의 강한 기온 하강은 태평양과 대륙사이의 기압 차를 약화시키고 있다. 남동에서 북서방향으로의 기압경도력이 약화됨에 따라 중국 남부와 남중국해로부터 북동쪽으로의 수증기 수송도 약화되었다. 이러한 수증기 수송의 변화는 모의 영역 북부지역에서의 과다한 강수 모의와 남중국해에서의 과소한 강수모의를 동시에 크게 완화시켰다. 그러나 지면피복의 변화는 특히 7월과 8월에 한반도와 일본 열도 지역에서의 강수를 크게 증기시키고 있다.

Modelling land surface temperature using gamma test coupled wavelet neural network

  • Roshni, Thendiyath;Kumari, Nandini;Renji, Remesan;Drisya, Jayakumar
    • Advances in environmental research
    • /
    • 제6권4호
    • /
    • pp.265-279
    • /
    • 2017
  • The climate change has made adverse effects on land surface temperature for many regions of the world. Several climatic studies focused on different downscaling techniques for climatological parameters of different regions. For statistical downscaling of any hydrological parameters, conventional Neural Network Models were used in common. However, it seems that in any modeling study, uncertainty is a vital aspect when making any predictions about the performance. In this paper, Gamma Test is performed to determine the data length selection for training to minimize the uncertainty in model development. Another measure to improve the data quality and model development are wavelet transforms. Hence, Gamma Test with Wavelet decomposed Feedforward Neural Network (GT-WNN) model is developed and tested for downscaled land surface temperature of Patna Urban, Bihar. The results of GT-WNN model are compared with GT-FFNN and conventional Feedforward Neural Network (FFNN) model. The effectiveness of the developed models is illustrated by Root Mean Square Error and Coefficient of Correlation. Results showed that GT-WNN outperformed the GT-FFNN and conventional FFNN in downscaling the land surface temperature. The land surface temperature is forecasted for a period of 2015-2044 with GT-WNN model for Patna Urban in Bihar. In addition, the significance of the probable changes in the land surface temperature is also found through Mann-Kendall (M-K) Test for Summer, Winter, Monsoon and Post Monsoon seasons. Results showed an increasing surface temperature trend for summer and winter seasons and no significant trend for monsoon and post monsoon season over the study area for the period between 2015 and 2044. Overall, the M-K test analysis for the annual data shows an increasing trend in the land surface temperature of Patna Urban.

Impacts of Climate Change on Water Crisis and Formation of Green Algal Blooms in Vietnam

  • Thriveni, Thenepalli;Lee, Namju;Nam, Gnu;Whan, Ahn Ji
    • 에너지공학
    • /
    • 제26권1호
    • /
    • pp.68-75
    • /
    • 2017
  • Global warming affects water supply and water resources throughout the world. In many countries, climate change affects significantly on the fresh water resources. Vietnam is exposed mainly, to landslides and floods triggered by tropical storms and monsoon rains, although storm surge, whirlwind, river bank and coastal line erosion, hail rain. In addition to the prevalent drought, there are many major water challenges, including water availability, stress, scarcity and accessibility, because of poor resource management. Fast growth of urbanization, industrialization and population growth, agricultural activities and climate change cause heavy pressure on water quality. Both domestic and industrial wastewater, as well as storm water shares the same drainage. The common facilities for wastewater treatment are not available. Therefore, wastewater is treated only superficially and then discharged directly into rivers and lakes causing serious pollution of surface water environment. In this paper, we reported the severe water crisis and massive green algal blooms formation in Vietnam rivers and lakes. This is the biggest evidence of climate change variations in Vietnam.