• 제목/요약/키워드: Monsoon climate

검색결과 164건 처리시간 0.031초

Year-to-Year and Inter-Decadal Fluctuations in Abundance of Pelagic Fish Populations in Relation to Climate-Induced Oceanic Conditions

  • Gong, Yeong;Suh, Young-Sang;Han, In-Seong;Seong, Ki-Tack
    • Journal of Ecology and Environment
    • /
    • 제31권1호
    • /
    • pp.45-67
    • /
    • 2008
  • Ocean climate variables ($1900{\sim}2005$), time series of catches ($1910{\sim}2005$) and body size data were used to assess the year-to-year and decadal scale fluctuations in abundance of the fish populations (Japanese sardine, anchovy, jack mackerel, chub mackerel, Pacific saury and common squid) that have spawning grounds in the East China Sea and its adjacent regions. A negative correlation between the abundance of pelagic fishes (e.g. jack mackerel) in the Tsushima Warm Current (TWC) region and the Kuroshio-Oyashio Current (KOC) region was attributed to the climatic modulation of larval transport and recruitment, which depends on the winter monsoon-induced drift, current systems, and spawning season and site. The changes in abundance and alternation of dominant fish populations in the two regions in the 1930s, 1970s, and late 1980s mirrored changes in the climate indices (ALPI, AOI and MOI). Oscillations in the decadal climate shifts between the two regions led to zonal differences in larval transport and recruitment, and hence differences in the abundance of the pelagic fish populations. During deep Aleutian Lows, as in the 1980s, larval transport from the East China Sea to the KOC region increases in association with the strong winter Asian monsoon, cool regime and increased volume transport of the Kuroshio Current systems, whereas during a weak Aleutian Low (as in the 1990s), larval transport to the TWC region increased in association with a weak winter Asian monsoon, a warm regime, and increased volume transport of the Tsushima current system. We postulate that the increased chub mackerel abundance in the TWC region and the decreased abundance in the KOC region in the 1990s are partly attributed to changes in recruitment and availability to the fishing fleets under the warm regime in the spawning and nursery grounds in the East China Sea in association with the quasi-steady state of mild winter monsoon in the 1990s. The fluctuations in chub mackerel and jack mackerel abundance are under the environment-dependant growth form, although the tropicalization was identified in the TWC region. The density-dependant growth form was found in Japanese sardine populations, but no tropicalization by fishing was identified in the long ($10{\sim}15$ year) periods of abundance despite their short ($3{\sim}4$ year) generation time, suggesting that the environment-dependant growth form drove the changes in abundance. Year-to-year and decadal scale variations in abundance and population structure of the Pacific saury responded to climate regime shifts (1976/1977, 1988/1989), suggesting that the fish is a key bio-indicators for changes in the ecosystem.

아시아 여름 몬순에서의 지역별 극한 강수의 역학과 특성 (Dynamics and Characteristics of Regional Extreme Precipitation in the Asian Summer Monsoon)

  • 전하은;하경자;김혜렴;오효은
    • 대기
    • /
    • 제34권3호
    • /
    • pp.257-271
    • /
    • 2024
  • In 2023, the World Meteorological Organization released a report on climate conditions in Asia, highlighting the region's high vulnerability to floods and the increasing severity and frequency of extreme precipitation events. While previous studies have largely concentrated on broader-scale phenomena such as the Asian monsoon, it is crucial to investigate the substantial characteristics of extreme precipitation for a better understanding. In this study, we analyze the spatiotemporal characteristics of extreme precipitation during summer and their affecting factors by decomposing the moisture budgets within specific Asian regions over 44 years (1979~2022). Our findings indicate that dynamic convergence terms (DY CON), which reflect changes in wind patterns, primarily drive extreme rainfall across much of Asia. In southern Asian sub-regions, particularly coastal areas, extreme precipitation is primarily driven by low-pressure systems, with DY CON accounting for 70% of the variance. However, in eastern Asia, both thermodynamic advection and nonlinear convergence terms significantly contribute to extreme precipitation. Notably, on the Korean Peninsula, thermodynamic advection plays an important role, driven by substantial moisture carried by strong southerly mean flow. Understanding these distinct characteristics of extreme rainfall across sub-regions is expected to enhance both predictability and resilience.

겉보기 열원 및 습기 흡원의 세 재분석 자료 비교와 몬순 지역별 분석 (Three Reanalysis Data Comparison and Monsoon Regional Analysis of Apparent Heat Source and Moisture Sink)

  • 하경자;김서경;오효은;문수연
    • 대기
    • /
    • 제28권4호
    • /
    • pp.415-425
    • /
    • 2018
  • The roles of atmospheric heating formation and distribution on the global circulation are of utmost importance, and those are directly related to not only spatial but also temporal characteristics of monsoon system. In this study, before we clarify the characteristics of apparent heat source <$Q_1$> and moisture sink <$Q_2$>, comparisons of three reanalysis datasets (NCEP2, ERA-Interim, and JRA-55) in its global or regional patterns are performed to clearly evaluate differences among datasets. Considering inter-hemispheric difference of global monsoon regions, seasonal means of June-July-August and December-January-February, which is summer (winter) and winter (summer) in the Northern (Southern) Hemisphere are employed respectively. Here we show the characteristics of eight different regional monsoon regions and find contributions of <$Q_2$> to <$Q_1$> for the regional monsoon regions. Each term in apparent heat source and moisture sink is shown to come from the ERA-Interim dataset, since the ERA-Interim could be representative of three datasets. The NCEP2 data has a different characteristic in the ratio of <$Q_2$> and <$Q_1$> because it overestimates <$Q_1$> compared to the other two different datasets. The Australia monsoon has been performing better over time, while some regional monsoons (South America, North America, and North Africa) have been showing increasing data inconsistency. In addition, the three reanalysis datasets are getting different marching with time, in particular since the early 2000s over South America, North America, and North Africa monsoon regions. The recent inconsistency among the three datasets that may be associated with the global warming hiatus remains unexplored.

한국기상학회 기후역학 분야 학술 발전 현황 (Academic Development Status of Climate Dynamics in Korean Meteorological Society)

  • 안순일;예상욱;서경환;국종성;김백민;김대현
    • 대기
    • /
    • 제33권2호
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.

농경작지 식생의 군란분류 및 군락생태학적 연구 (Syntaxonomical and synecological Characteristics of Rice Field Vegetation)

  • 김종원;남화경
    • The Korean Journal of Ecology
    • /
    • 제21권3호
    • /
    • pp.203-215
    • /
    • 1998
  • The weed vegetion of the rice fields in south Korea was researched in terms of syntaxonomy and synecology. Total 186 releves were analyzed by the Zurich-Montpellier school's method. 10 syntaxa were recognized: Stellario-Alopecuretum amurensis ass. nov. hoc loco, Alopecuro-Ranunculetum scelerati Miyawaki et Okuda 1972, Hemistepto-Capsellietum bursa-pastoriae ass. nov. hoc loco, Oryza sativa-Echinochloa crusgalli community, Sagittario-Monochorietum plantaginea Miyawaki 1960, Cyperus iria community, Hyperico-Juncetum decipiens ass. nov. hoc. loco, Spirodela-Lemna paucicostata community, Lemno-Salvinetum natans Miyawaki et J. Tuxen 1960. The Oryzo-Echinochloion oryzoides Bolos et Masclans 1955 and the Alopecurion amurensis Miyawaki et Okuda 1972 are representative of the summer annual plant community and the winter annual plant community. It was emphasized that syntaxonomical and synecological study on the ruderal and segetal weed vegetation in Korea should be accomplished in consideration of bioclimatic condition of summer monsoon climate of Korean Peninsula.

  • PDF

Global and Korean Peninsula Climate Changes and Their Environmental Changes

  • Yi, Hi-Il;Shin, Im-Chul
    • 한국제4기학회지
    • /
    • 제21권2호
    • /
    • pp.74-76
    • /
    • 2007
  • The modern foraminiferal distribution patterns and species diversity in surrounding seas of Korea are controlled by winter monsoon and characteristics of water masses. Abrupt climate change, Younger Dryas cold episode" is identified in Korea. The Younger Dryas is characterized by local extinctions of foraminifera. Several record-breaking climate phenomena observed in Korea, especially September, 2007.

  • PDF

적도 저주파 진동과 관련된 한반도 여름철 강수의 변동성 연구 (Analysis on the Variability of Korean Summer Rainfall Associated with the Tropical Low-frequency Oscillation)

  • 문자연;최영은;박창용
    • 대한지리학회지
    • /
    • 제48권2호
    • /
    • pp.184-203
    • /
    • 2013
  • 이 연구에서는 장기간의 관측 자료를 이용하여 적도 저주파 진동과 관련된 한반도 여름철 강수의 변동성을 분석하였다. EOF 분석을 실시한 결과 여름철 대표적인 한반도 강수 패턴은 남한과 북한이 반대의 위상을 가지며 1990년대 중반을 기점으로 레짐 이동이 나타나는 변동 특성을 보였다. 한반도의 여름철 강수는 엘니뇨/라니냐 변동에 따라 적도 동태평양에서 해수면 온도가 증가하는 강한 엘니뇨 해와 적도에서부터 중위도 서태평양까지 남북으로 연결되어 강수량이 증가하는 약한 라니냐 해에 특히 우리나라(남한)의 남부지방에서 증가하는 경향을 보여주었다. 여름철 인도, 북서태평양, 북동아시아 몬순 지수 및 여름철 강수지수에 대한 계절 내 변동에 의해, 우리나라 강수는 6월 인도 몬순 지수와 양의 상관이 있고 7월 북서태평양 몬순 지수와 음의 상관이 있으며 8월 인도 몬순 지수와 가장 높은 음의 상관이 있는 것으로 나타났다.

  • PDF

NCEP 계절예측시스템과 정준상관분석을 이용한 북동아시아 여름철 강수의 예측 (A Prediction of Northeast Asian Summer Precipitation Using the NCEP Climate Forecast System and Canonical Correlation Analysis)

  • 권민호;이강진
    • 한국지구과학회지
    • /
    • 제35권1호
    • /
    • pp.88-94
    • /
    • 2014
  • 현재 최고 수준의 대순환 모형에서 북동아시아 여름몬순 강도의 계절예측 능력은 낮으나 북서태평양 아열대 고기압 강도의 예측률은 상대적으로 높다. 북서태평양 아열대 고기압은 북서태평양 지역 및 동아시아 지역에서 가장 주된 기후 변동성이다. 본 연구에서 NCEP 계절예측시스템에서 예측된 북서태평양 아열대 고기압의 예측성에 대해 논의될 것이다. 한편, 북동아시아 여름몬순의 경년변동성은 북서태평양 아열대 고기압과 높은 상관성을 가지고 있다. 본 연구에서는 이 관계에 근거하여, NCEP 계절예측시스템과 정준상관분석을 이용한 계절예측 모형을 제안하고 그 예측률을 평가하였다. 이 방법은 북동아시아 지역 여름철 강수량 편차에 대한 계절예측에 있어 통계적으로 유의한 예측성능을 제공한다.

여름철 계절안 진동이 한반도 강수에 미치는 영향 및 장기 변화 특성 연구 (Influence of Boreal Summer Intraseasonal Oscillation on Korean Precipitation and its Long-Term Changes)

  • 이준이;;문수연;하경자
    • 대기
    • /
    • 제27권4호
    • /
    • pp.435-444
    • /
    • 2017
  • By analyzing Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) from May to September for 1951~2007, this study investigates impacts of two dominant boreal summer intraseasonal oscillation (BSISO) modes on precipitation over Monsoon Asia including Korea and long-term change of 10~20-day and 30~60-day ISO over Korea. It is shown that BSISO strongly modulates rainfall variability over the many part of Monsoon Asia including Korea. Korea tends to have more (less) rainfall during the phases 3~5 (7~8) of BSISO1 representing the canonical northward/northeastward propagating 30~60-day ISO and during the phases 6~8 (3~5) of BSISO2 representing the northward/northwestward propagating 10~20-day ISO. It is found that the 10~20-day ISO variability contributes to summer mean rainfall variability more than 30~60-day ISO over Korea. For the 57 years of 1951~2007, the correlation coefficient between the May to September mean precipitation anomaly and standard deviation of 10~20-day (30~60-day) ISO is 0.71 (0.46). It is further noted that there is a significant increasing trend in the 10~20-day and 30~60-day ISO variability in the rainy season during the period of 1951 to 2007.