• Title/Summary/Keyword: Monolayer culture of dissociated cells

Search Result 3, Processing Time 0.017 seconds

In Vitro Culture of Human Nasal Epithelial Cells by Monolayer Culture of Dissociated Cells (분리 세포의 단층세포 배양법에 의한 인체 비점막 상피세포의 배양)

  • Kim, Yong-Dae;Song, Si-Youn;Min, Myung-Ki;Sub, Jang-Su;Song, Kei-Won;Park, Ho-Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.2
    • /
    • pp.286-296
    • /
    • 1998
  • Different techniques for culturing respiratory epithelial cells have been developed to overcome the limitations of studies on in vivo and on bioptic material. Traditionally, culture systems are divided into organ cultures, explant cultures and dissociated cell cultures. The first two contain both epithelial and non-epithelial cells. However, in monolayer cultures of dissociated cells only epithelial cells are present, the effects observed are caused by a pure epithelial responses. The purpose of this study is to establish primary culture method of human nasal epithelium (HNEC) by monolayer culture of dissociated cells to evaluate the role of the epithelial cells in the allergic and non-allergic nasal inflammatory reactions. HNEC was prepared by primary culture method of monolayer culture of dissociated cells from human inferior nasal turbinate mucosa of septal deviation patients. Primary cultured cells were characterized by indirect immunofluorescence assay and transmission electron microscopy. The immunoreactivities of cytokeratin-pan and cytokeratin No. 8 were observed in cultured HNEC. However, the immnoreactivities of vimentin and von Willebrand factor were not observed in cultured HNEC. The tonofilaments and desmosome were observed in cultured HNEC. The cultured epithelial cells were identified to be pure nasal epithelial cells. The monolayer culture of dissociated cells could successfully be employed for further study to investigate the role of the epithelial cells in allergic or non-allergic nasal inflammatory diseases.

  • PDF

Isolation and in vitro culture of primary cell populations derived from ovarian tissues of the rockfish, Sebastes schlegeli

  • Ryu, Jun Hyung;Kim, Hak Jun;Bae, Seung Seob;Jung, Choon Goo;Gong, Seung Pyo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.2
    • /
    • pp.9.1-9.7
    • /
    • 2016
  • This study was conducted to identify the general conditions for the isolation and in vitro culture of ovary-derived cells in rockfish (Sebastes schlegeli). The effects of three different enzymes on cell retrieval from ovarian tissues were evaluated first, and then the ovary-dissociated cells were cultured under various culture conditions, with varying basal media and culture temperatures, addition of growth factors, and/or culture types. We found that collagenase type I treatment was effective for cell isolation from ovarian tissues. From a total of 42 trials to evaluate the effects of basal media and culture temperatures on cell culture of ovary-dissociated cells, we observed that Leibovitz's L15 medium was more supportive than Dulbecco's modified Eagle's medium for culture, and the cells could grow at all three temperatures tested, 15, 20, and $25^{\circ}C$, at least up to passage 2. However, growth factor addition did not improve cell growth. Introduction of suspension culture after monolayer culture expanded the culture period significantly more than did monolayer culture alone. Our results may provide a basis for developing an in vitro system for S. schlegeli germline cell culture, which will ultimately lead to improvement of the species.

Mouse Submandibular Gland Cells: Isolation and Establishment of Culture Condition En vitro (마우스의 악하선 세포의 분리 및 배양조건 확립)

  • 소준노;박호원;장선일;이금영;이원구
    • The Korean Journal of Zoology
    • /
    • v.34 no.2
    • /
    • pp.148-158
    • /
    • 1991
  • The purpose of this research was to establish the culture condition for dissociated submandibu -lar gland (SG) cells. After trypsin digestion of SG from 3-4 weeks old mice, dissociated cells were cultured in 1OO/o fetal bovine serum-Dulbecco's modified Eagle's medium (FBS-DME) or 0.5-2% low protein serum replacement-DME (LPSR-DME) on plastic surface to form monolayer. The effects of FBS, LPSR and hormones on the growth and function of cultured SG cells were examined. SG cells dissociated by enzyme were successfully cultured and were characterized as epithelial-like cells by light and electron microscope. The maximal DNA synthesis of cultured SG cells was achieved by DME containing 5-10% FBS. The same results were obtained when the effects of LPSR on cell proliferation were examined up to a LPSR concentration of 2%. SG cells cultured in 20/o LPSR-DME expressed a population doubling time of 42.5 hrs and a saturation density of 1.2 $\times$10 5cell/cm$^2$. Dihydrotestosterone (DHT) in medium did not influence on the DNA synthesis of the cultured SG cells, but stimulated protein synthesis of the SG cells. Thyroxine (T4) stimulated protein synthesis of the SCI cells markedly in a dose-dependent fashion. EGF secretion by the cultured SG cells increased significandy by DHT and or T4 trearment. This finding indicated that secretion of EGF by the SG cells was under the control of the hormones such as androgen and thyroid hormones. It seems to be that the culture condition described here can be used as a useful tool for further research on the SCI cells.

  • PDF