• Title/Summary/Keyword: Monohydrate

Search Result 106, Processing Time 0.022 seconds

Similarities and differences between alpha-tocopherol and gamma-tocopherol in amelioration of inflammation, oxidative stress and pre-fibrosis in hyperglycemia induced acute kidney inflammation

  • Shin, Hanna;Eo, Hyeyoon;Lim, Yunsook
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Diabetes mellitus (DM) is a major chronic disease which increases global health problems. Diabetes-induced renal damage is associated with inflammation and fibrosis. Alpha (AT) and gamma-tocopherols (GT) have shown antioxidant and anti-inflammatory effects in inflammation-mediated injuries. The primary aim of this study was to investigate effects of AT and GT supplementations on hyperglycemia induced acute kidney inflammation in alloxan induced diabetic mice with different levels of fasting blood glucose (FBG). MATERIALS/METHODS: Diabetes was induced by injection of alloxan monohydrate (150 mg/kg, i.p) in ICR mice (5.5-week-old, male) and mice were subdivided according to their FBG levels and treated with different diets for 2 weeks; CON: non-diabetic mice, m-DMC: diabetic control mice with mild FBG levels (250 mg/dl ${\leq}$ FBG ${\leq}$ 450 mg/dl), m-AT: m-DM mice fed AT supplementation (35 mg/kg diet), m-GT: m-DM mice with GT supplementation (35 mg/kg diet), s-DMC: diabetic control mice with severe FBG levels (450 mg/dl < FBG), s-AT: s-DM mice with AT supplementation, s-GT: s-DM mice with GT supplementation. RESULTS: Both AT and GT supplementations showed similar beneficial effects on $NF{\kappa}B$ associated inflammatory response (phosphorylated inhibitory kappa B-${\alpha}$, interleukin-$1{\beta}$, C-reactive protein, monocyte chemotactic protein-1) and pre-fibrosis (tumor growth factor ${\beta}$-1 and protein kinase C-II) as well as an antioxidant emzyme, heme oxygenase-1 (HO-1) in diabetic mice. On the other hands, AT and GT showed different beneficial effects on kidney weight, FBG, and oxidative stress associated makers (malondialdehyde, glutathione peroxidase, and catalase) except HO-1. In particular, GT significantly preserved kidney weight in m-DM and improved FBG levels in s-DM and malondialdehyde and catalase in m- and s-DM, while AT significantly attenuated FBG levels in m-DM and improved glutathione peroxidase in m- and s-DM. CONCLUSIONS: the results suggest that AT and GT with similarities and differences would be considered as beneficial nutrients to modulate hyperglycemia induced acute renal inflammation. Further research with careful approach is needed to confirm beneficial effects of tocopherols in diabetes with different FBG levels for clinical applications.

Improvement of Dissolution Rate for Zaltoprofen Tablets Using CMC and HPMC (CMC와 HPMC를 이용한 잘토프로펜 정제의 용출률 개선)

  • Park, Hyun-Jin;Hong, Hee-Kyung;Song, Yi-Seul;Hong, Min-Sung;Seo, Han-Sol;Hong, Dong-Hyun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.300-305
    • /
    • 2010
  • Zaltoprofen is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs) and has been widely used in the treatment of a number of arthritic conditions or lumbago. Zaltoprofen has low water solubility and low bioavailability, therefore great efforts have been devoted to enhance the extent of drug adsorption. In this study, zaltoprofen was formulated into a tablet to enhance the bioavailability and to achieve sustained-release using additives such as lactose monohydrate, carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC). Fourier transform-infrared (FTIR) and differential scanning calorimeter (DSC) were employed to study the structure and crystallization of zaltoprofen in the tablet with various contents of additives. It was found that additives had interactions with zaltoprofen and inhibited the crystallization of zaltoprofen. Tablets containing low viscosity HPMC showed a higher release than those containing high viscosity HPMC. Also, as the amount of CMC increased zaltoprofen release increased.

A study on the pyrolysis of lithium carbonate for conversion of lithium hydroxide from lithium carbonate (탄산리튬으로부터 수산화리튬 전환을 위하여 탄산리튬의 열분해에 대한 연구)

  • Park, Jae Eun;Park, Min Hwa;Seo, Hyeong Jun;Kim, Tae Seong;Kim, Dae Weon;Kim, Bo Ram;Choi, Hee Lack
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2021
  • Research on the production of lithium hydroxide (LiOH) has been actively conducted in response to the increasing demand for high nickel-based positive electrode materials for lithium-ion batteries. Herein we studied the conversion of lithium oxide (Li2O) through thermal decomposition of lithium carbonate for the production of lithium hydroxide from lithium carbonate (Li2CO3). The reaction mechanism of lithium carbonate with alumina, quartz and graphite crucible during heat treatment was confirmed. When graphite crucible was used, complete lithium oxide powder was obtained. Based on the TG analysis results, reagent-grade lithium carbonate was heat-treated at 700℃, 900℃ and 1100℃ for various time and atmosphere conditions. XRD analysis showed the produced lithium oxide showed high crystallinity at 1100℃ for 1 hour in a nitrogen atmosphere. In addition, several reagent-grade lithium oxides were reacted at 100℃ to convert to lithium hydroxide. XRD analysis confirmed that lithium hydroxide (LiOH) and lithium hydroxide monohydrate (LiOH·H2O) were produced.

Effects of stress after road transportation and oral administration of chromium and meloxicam on plasma cortisol concentrations and behavior in dairy calves

  • Jung, Da Jin Sol;Lee, Jaesung;Kim, Do Hyun;Beak, Seok-Hyeon;Hong, Soo Jong;Jeong, In Hyuk;Yoo, Seon Pil;Lee, Jin Oh;Cho, In Gu;Fassah, Dilla Mareistia;Kim, Hyun Jin;Baik, Myunggi
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.503-510
    • /
    • 2022
  • Objective: This study was performed to determine the effects of stress after road transportation and oral administration of chromium and meloxicam on growth performance, plasma cortisol, serum metabolites, and behavior in dairy calves. Methods: A total of 50 Holstein heifers (average body weight [BW]: 172±4.19 kg; average age: 5.53±0.12 months) were randomly assigned to five groups including NL (not transported + D-lactose; 1 mg/kg BW), TL (transported + D-lactose; 1 mg/kg BW), TC (transported + chromium; 0.5 mg/kg dry matter [DM] feed), TM (transported + meloxicam; 1 mg/kg BW), and TMC (transported + combination of meloxicam and chromium; 1 mg/kg BW and 0.5 mg/kg DM, respectively). Doses of D-lactose monohydrate, meloxicam, and chromium were prepared for oral administration by suspension in 15 mL of water in a 20-mL dosing syringe. Blood was collected before transportation, immediately after 120 km of transportation (IAT), and at 6, 24, and 48 h after transportation. Results: Neither transportation nor administration of meloxicam and/or chromium affected (p = 0.99) average daily gain and feed intake. Plasma cortisol concentrations in the NL group (average 0.13 and 0.18 nmol/L, respectively) were lower (p<0.001) compared to the TL group (average 0.39 and 0.61 nmol/L, respectively) at IAT and 48 h after transportation. At 48 h after transportation, cortisol concentrations were lower (p<0.05) in the TC group (average 0.22 nmol/L) than in the TL group (average 0.61 nmol/L), and TC calves had similar cortisol concentrations to NL calves. Lying duration (min/d) was shorter (p<0.05) in the TL group than in the NL group at 2 d after transportation. Lying duration was longer (p<0.05) for the TC and TMC groups than for the TL group at 2 d after transportation. Conclusion: Transportation increased cortisol concentrations and affected lying behavior, while chromium administration reduced cortisol concentrations and changed lying behavior. Thus, chromium administration before transportation may be a viable strategy to alleviate stress elicited by road transportation.

The Effects of Negative- and Positive- Charged Surfactants on In vitro DM Digestibility and the Growth of Ruminal Mixed Microorganisms (양(+) 이온성 및 음(-) 이온성 계면활성제 첨가가 반추위 혼합 미생물에 의한 In vitro 건물소화율 및 미생물 성장에 미치는 영향)

  • Lee, S.J.;Shin, N.H.;Kim, W.Y.;Moon, Y.H.;Kim, H.S.;Ha, J.K.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • In order to investigate the effects of supplemental ionic surfactants in in vitro ruminal fermentation, N-Lauroylsarcosine sodium salt(N-LSS) and sodium dodecyl sulfate(SDS) for negative(-) ionic surfactant, and hexadecylpyridinium chloride monohydrate(HPCM) and hexadecyltrimethyl ammonium bromide(HTAB) for positive (+) ionic surfactant were supplemented by 0.05% and 0.1% into the Dehority’s artificial medium containing rice straw(1mm) as a substrate. In vitro DM digestibility, the growth of rumen mixed microbes, pH, cumulative gas production and SEM(Scanning Electron Microscopy) observation of microbial attachment on rice straw particle were investigated through the experiment composing 9 treatments (two supplemental levels of two positive ionic(+) surfactant, two supplemental levels of two negative(-) ionic surfactant) including the control. The sample collection was at 6, 12, 24, 48 and 72 h post fermentation with 3 replications per treatments. DM digestibility in treatments supplemented (+) or (-) surfactants almost stopped afterward 12 h fermentation, in vitro DM digestibility at 72 h post fermentation in the ionic surfactants was at half level of that of the control(P<0.05). Accumulative gas production in in vitro was less(P<0.05) with addition of ionic surfactants compared to the control. The amount of rumen mixed microbes recovered from in vitro incubation fluid pleateaued at 12 h post fermentation for the positive (+) ionic surfactants, but steadily increased as fermentation time elapsed for the control. Rumen microbial growth rate was significantly(P<0.05) low in the negative(-) ionic surfactant compared to the control. pH of the incubation fluid was ranged from 6.02 to 7.20, and was the highest in the negative(-) ionic surfactants, and was the lowest in the control(P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was less with addition of ionic surfactants than the control. In conclusion we could not found any positive effects of negative- and positive- charged surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

Administration of chromium picolinate and meloxicam alleviates regrouping stress in dairy heifers

  • Da Jin Sol Jung;Jaesung Lee;Do Hyun Kim;Seok-Hyeon Beak;Soo Jong Hong;In Hyuk Jeong;Seon Pil Yoo;Jin Oh Lee;In Gu Cho;Dilla Mareistia Fassah;Hyun Jin Kim;Mohammad Malekkhahi;Myunggi Baik
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1495-1502
    • /
    • 2024
  • Objective: This research investigated the effect of administering chromium (Cr) and meloxicam (MEL) on growth performance, cortisol and blood metabolite, and behaviors in young, regrouped heifers. Methods: Fifty Holstein dairy heifers (body weight [BW] 198±32.7 kg and 6.5±0.82 months of age) were randomly assigned to non-regrouped group or four regrouped groups. Non-regrouped animals were held in the same pen throughout the entire experimental period (NL: non-regrouping and administration of lactose monohydrate [LM; placebo]). For regrouping groups, two or three heifers maintained in four different pens for 2 weeks were regrouped into a new pen and assigned to one of four groups: regrouping and LM administration (RL); regrouping and Cr administration (RC); regrouping and MEL administration (RM), and regrouping and Cr and MEL administration (RCM). LM (1 mg/kg BW), Cr (0.5 mg Cr picolinate/kg dry matter intake), and MEL (1 mg/kg BW) were orally administered immediately before regrouping. Blood was collected before regrouping (0 h) and at 3, 9, and 24 h and 7 and 14 d thereafter. Behaviors were recorded for 7 consecutive days after regrouping. Results: Average daily gain was lower (p<0.05) in RL than NL heifers, but was higher (p<0.05) in RM, RC, and RCM than RL heifers. RL heifers had higher (p<0.05) cortisol than NL heifers on d 1 after regrouping. The cortisol concentrations in RC, RM, and RCM groups were lower (p<0.05) than in RL treatment 1 d after regrouping. Displacement behavior was greater (p<0.05) in RL group than all other groups at 2, 3, and 6 d after regrouping. Conclusion: Regrouping caused temporal stress, reduced growth performance, and increased displacement behavior in heifers. Administering Cr and MEL recovered the retarded growth rate and reduced displacement behavior, thereby alleviating regrouping stress.