• 제목/요약/키워드: Monodisperse Particle

검색결과 100건 처리시간 0.028초

An Environmentally-friendly Precursor, Ferrous Acetate, in preparation for Monodisperse Iron Oxide Nanoparticles

  • Suh, Yong-Jae;Kil, Dae-Sup;Chung, Kang-Sup;Lee, Hyo-Sook;Shao, Huiping
    • Journal of Magnetics
    • /
    • 제13권3호
    • /
    • pp.106-109
    • /
    • 2008
  • Almost monodisperse iron oxide nanoparticles with an average particle size ranging from 5 to 43 nm were fabricated using an environmentally friendly starting material, ferrous acetate. The smallest particles were formed in the presence of a reductant, 1,2-dodecanediol, while the particle size increased with increasing concentration of dispersing agents. The dispersants consisted of various combinations of oleic acid, oleylamine, trioctylphosphine, and polyvinylpyrrolidone. The threshold temperature to form crystalline particles was found to be $240^{\circ}C$. The 43 nm nanoparticles exhibited a room temperature saturation magnetization and coercivity of 57 emu/g and 47 Oe, respectively.

Electrolyte Effect on the Particle Characteristics Prepared by Soap-Free Emulsion Polymerization

  • Han, Seung-Tak;Lee, Kang-Seok;Shim, Sang-Eun;Saikia, Prakash J.;Choe, Soon-Ja;Cheong, In-Woo
    • Macromolecular Research
    • /
    • 제15권5호
    • /
    • pp.403-411
    • /
    • 2007
  • Monodisperse micron-sized polystyrene (PS) spheres were successfully obtained using a single stage soap-free emulsion method in aqueous media mixed with ethanol (co-solvent) containing NaCI as the electrolyte. The optimum conditions for preparing the monodisperse PS microspheres, using soap-free emulsion polymerization in a water/ethanol mixture with an electrolyte, were studied. The presence of the co-solvent and electrolyte controlled the particle dispersion stability during the polymerization. The microspheres formed using PS, with a weight-average diameter of $2.6{\mu}m$, coefficient of variation of 5.3% and zeta potential of -15.1 eV, were successfully obtained in the presence of 0.1 wt% NaCI, 10 wt% monomer, 0.1 wt% initiator and 95/5 (g/g) of a water/ethanol mixture reacted at $70^{\circ}C$ for 24 h.

Preparation of Highly Cross-linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part I. Batch Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • 제15권3호
    • /
    • pp.244-255
    • /
    • 2007
  • Nucleation is the most sensitive stage in the preparation of highly cross-linked, monodisperse microspheres by dispersion polymerization, since the addition of a small amount of cross-linker results in particle deformation and coagulation. To overcome these problems, $5\;{\mu}m$ poly(methyl methacrylate) seed particles prepared by dispersion polymerization were used in the preparation of mono disperse, cross-linked PMMA particles containing up to 7 wt% divinylbenzene by seeded batch dispersion polymerization. Spherical particles with a narrow size distribution containing up to 8 wt% of EGDMA were prepared by seeded multi-batch dispersion polymerization processes. These particles were identified by scanning electron microscopy and DSC.

Synthesis of Monodisperse Silica Particles using Rotating Cylinder Systems

  • Cho, Young-Sang;Shin, Cheol Hwan
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.792-799
    • /
    • 2016
  • Monodisperse silica nanospheres were synthesized by Stober method using rotating cylinder systems with batch or continuous manner. The particle size could be controlled by adjusting the reactant compositions such as the amount of monomer, catalyst, and water in the reaction mixture. The size and monodispersity of the ceramic particles could be controlled by changing the reaction medium with different alcohols other than ethanol or changing the reaction temperature. The effect of Taylor number (Ta) on the average diameter and standard deviation of silica particles were also studied by adjusting the rotation speed of inner cylinder, and the maximum diameter of particles was observed at Ta ${\approx}3,000$.

Synthesis of Monodisperse Spherical SiO2 and Self-Assembly for Photonic Crystals

  • Lee, Byung-Kee;Jung, Young-Hwa;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.472-477
    • /
    • 2009
  • Monodisperse spherical $SiO_2$ particles of various sizes ($\sim$350 nm and $\sim$800 nm) and size distributions were synthesized from TEOS and MTMS. The particle size and size distribution were controlled by changing the volume ratio of water to ethanol and the reaction temperature. Narrow-sized $SiO_2$ particles with $\sim$3% size distribution were obtained. Self-assembly of the $SiO_2$ particles for photonic crystals were performed by the solvent evaporation method. The number of ordered $SiO_2$ layers can be controlled by changing the amount of the dispersed $SiO_2$ volume fraction in the solvent.

화염중 발생하는 SiO$_2$/TiO$_2$/다성분입자의 조성특성에 관한 실험적 연구 (An Experimental Study on Composition Characteristics of SiO$_2$/TiO$_2$/Multicomponent Particle Generated in a Coflow Diffusion Flame)

  • 김태오;서정수;최만수
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1175-1182
    • /
    • 2001
  • Chemical compositions of polydisperse SiO$_2$/TiO$_2$multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. SiO$_2$/TiO$_2$multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP(titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor, flow rate of carrier gas $N_2$was fixed at 0.6lpm for TTIP, at 0.1lpm for TEOS. In-situ sampling probe was used to supply particles into DMA(differential mobility analyzer) which was calibrated with using commercial DMA(TSI, model 3071A) and classifying monodisperse multicomponent particles. Classified monodisperse particles were collected with electrophoretic collector. The distributions of composition from particles to particle were determined using EDS(energy dispersive spectrometry) coupled with TEM(transmission electron microscope). The chemical(atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the chemical(atomic) composition of SiO$_2$decreased with the height from burner surface and the composition of SiO$_2$and TiO$_2$approached to the value of 1 to 1 fat downstream. It is also found that the composition of SiO$_2$decreases as the mobility diameter of aggregate increases.

Differential Mobility Analyzer(DMA)내의 입자운동 및 특성 분석 (Particle path and performance evaluation of differential mobility analyzer)

  • 안강호;김남효;이종호;배귀남
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.2005-2013
    • /
    • 1996
  • Particle paths and flow fields in a prototype differential mobility analyzer (DMA) were numerically analyzed solving Navier-Stokes equation, electric field equation and particle motion considering viscous drag force, Coulomb force and polarization force. Analytically predicted particle diameters for the prototype DMA are in good agreement with the measured particle diameters within $\pm$1%. And the analytically predicted particle diameters are also in good agreement with numerical results for the prototype DMA.

입자의 형상에 따른 열영동 영향에 대한 실험적 연구 (Experimental Study on Thermophoretic Particle Deposition for an Agglomerated and Non-Agglomerated Particles)

  • 최광열;윤진욱;안강호
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.741-746
    • /
    • 2004
  • Agglomerated and non-agglomerated SiO$_2$ particles are synthesized in a furnace by oxidation of TEOS vapor. These polydispersed particles are classified with DMA to extract particles. Then these particles are introduced into a thermal precipitator through the ESP(Electrostatic Precipitator) to investigate the themophoretic particle deposition using CNCs(Condensation Nuclei Counter). The efficiency of themophoretic particle deposition according to agglomerated and non-agglomerated particles in the thermal precipitator has been studied as a function of particle size and TEOS mole concentration using monodisperse particles classified by DMA. The results show that the particle deposition efficiency decreases as TEOS mole concentration increases and particle size increases. Thereffre, it is concluded that the thermophoretic deposition efficiency is dependent of the particle morphology.

동적 상분리법을 이용한 이방성 도토리형상 입자 제조 (Anisotropic Acorn-like Particle Fabrication Via a Dynamic Phase Separation Method)

  • 박철호;백일현
    • 멤브레인
    • /
    • 제29권1호
    • /
    • pp.61-65
    • /
    • 2019
  • 이방성 입자는 독특한 물리적 특성 때문에 다양한 분야에서 발표되고 있다. 여기서, 이방성 도토리구조 나노 입자를 제조하기 위해 새로운 동적 상분리 방법이 도입된다. 동적 상분리 방법은 용제 증발 및 무용제에 의한 침전으로 구성된다. 하부층은 비용매 희석제로서 물을 공급함으로써 제어되며, 상부층의 상분리는 휘발성 용매의 확산 및 증발에 의존한다. 이 상태에서, 도토리 형 입자가 제조되었다. 물이 채워진 밀폐된 상자(자발적 상분리)하에서, 단분산 폴리스틸렌 입자가 합성되었다. 동적 상분리와 자발적 상분리가 공존할 때, 캡과 입자의 크기가 변경되었다. 또한, 폴리스틸렌 용액의 부피는 입자 형상에 영향을 미친다. 독특한 구조가 다양한 응용 분야에 활용될 수 있기 때문에 멤브레인 기반의 제어된 물 공급과 같은 첨단 기술이 개발되면 단분산의 도토리와 같은 입자가 제조될 수 있을 것이다.