• Title/Summary/Keyword: Monoclinic ZrO2

Search Result 98, Processing Time 0.022 seconds

Preparation and Characterization of Chromium Oxide Supported on Zirconia

  • Sohn Jong Rack;Ryu, Sam Gon;Park Man Young;Pae Yeong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.605-612
    • /
    • 1992
  • Chromium oxide/zirconia catalysts were prepared by dry impregnation of powdered $Zr(OH)_4$ with ($NH_4$)$_2$CrO$_4$aqueous solution. The characterization of prepared catalysts was performed using FTIR, XPS, XRD and DTA methods, and by the measurement of surface area. The addition of chromium oxide to zirconia shifted the transitions of $ZrO_2$ from amorphous to tetragonal phase and from tetragonal to monoclinic phase to higher temperature due to the strong interaction between chromium oxide and zirconia, and the specific surface area of catalysts increased in proportion to the chromium oxide content. Since the $ZrO_2$ stabilizes supported chromium oxide, chromium oxide was well dispersed on the surface of zirconia, and ${\alpha}$-$Cr_2O_3$ was observed only at the calcination temperature above 1173 K. Upon the addition of only small amount of chromium oxide (1 wt% Cr) to $ZrO_2$, both the acidity and acid strength of catalyst increased remarkably, showing the presence of two kinds of acid sites on the surface of $CrO_x$/$ZrO_4$-Bronsted and Lewis.

Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material (다공성 $ZrTiO_4$ 재료의 제조 및 특성)

  • Hur, Geun;Myoung, Seong-Jae;Lee, Yong-Hyun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • Cordierite has a very low thermal expansion coefficient, but has problem that it has a weak mechanical strength and is apt to be attacked by acid such as sulfur for using as a diesel particulate filter support. The physical properties of $ZrTiO_4$ modified with $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3\;and\;Nb_2O_5$ were investigated with XRD, SEM, UTM and thermal expansion, etc. in this paper. $ZrTiO_4$ powder was synthesized as a monoclinic structure with processes that starting materials of $TiO_2\;and\;ZrO_2$ were mixed with ball mill and calcined above $1240^{\circ}C$ for 3 hr. Additive modified $ZrTiO_4$ specimens for flexural strength and thermal expansion measurement were obtained by mixing $ZrTiO_4$ powder with additives, pressing and firing at $1300^{\circ}C$ for 3 hr. The porosity of additive modified $ZrTiO_4$ decreased monotonically with increasing additive content by 5 wt% regardless of additive types and saturated for further increase of additive by 10wt. The flexural strength of $Al_2O_3$ (5, 10 wt%) modified $ZrTiO_4$ shows a large increase, but that of other additives modified $ZrTiO_4$ decreased. The thermal expansion coefficient of additive modified $ZrTiO_4$ except $Nb_2O_5$ decreased continuously with the content of additive. In particular, the lowest thermal expansion coefficient of $ZrTiO_4$ was obtained for the additive of $SiO_2$.

Synthesis of ZrO2 Gel Dispersed with Au Fine Particles by Sol-Gel Method (졸-겔법에 의한 Au 미립자 분산 ZrO2 겔의 합성)

  • Mun, Chong-Soo;Lee, Seung-Min
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.219-223
    • /
    • 2003
  • Zirconia gels dispersed with fine Au particles have been prepared by the sol-gel method. Starting solution with (OC$Zr_4$$H_{ 9}$)$_4$, $C_4$ $H_{9}$ OH, $H_2$O,$ HNO_3$, $HAuC1_4$ was used to prepare gels in several molar ratio. After hydrolysis, viscosity of solutions as 4∼5 cP and gelling time of sols were spent about 9 days. As the heat-treatment temperature was increased,$ ZrO_2$ had the phase transition from tetragonal to monoclinic at $750^{\circ}C$. Heat-treatments of the gel have performed at 500, 700, 750, 800, 1000 and $1100^{\circ}C$ for 3 hrs, respectively. We have investigated TG-DTA, X-ray diffraction patterns, SEM and EDS. The size of Au fine particles dispersed in the heat-treatmented gel was about 0.15∼0.23 $\mu\textrm{m}$ and the shape was most sphericity.

Synthesis and Compaction Behavior of Monodispersed 3Y-ZrO2 Spherical Agglomerates

  • Choi, Hong-Goo;Yong, Seok-Min;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.434-438
    • /
    • 2013
  • Monodispersed 3Y-$ZrO_2$ spherical agglomerates were synthesized by thermal hydrolysis process followed by crystallization processes (hydrothermal treatment and calcination). The crystallization process affected the properties of the final particles, such as the primary particle size, the agglomeration state, and the fraction of $ZrO_2$ monoclinic phase. The hydrothermal treated spherical particles were porous microstructures (weak agglomerates) composed of small primary particles with a size of 14 nm, but the calcined spherical particles had a dense microstructure due to the hard aggregation between primary particles. While the calcined particles had a low green density due to the hard aggregation, hydrothermal treated ones were soft agglomerates and had a deflection point at 50 MPa due to the rearrangement of secondary spherical particles and the filling of the interstices with the primary particles. Finally, the green density of hydrothermally treated $ZrO_2$ particles was 58% at 200 MPa.

Structural Stability During Charge-Discharge Cycles in Zr-doped LiCoO2 Powders (충방전 과정중 구조가 안정한 Zr이 도핑된 LiCoO2 분말)

  • Kim, Seon-Hye;Shim, Kwang-Bo;Ahn, Jae-Pyoung;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.167-171
    • /
    • 2008
  • Zirconium-doped $Li_{1.1}Co_{1-x}Zr_xO_2(0{\leq}x{\leq}0.05)$ powders as cathode materials for lithium ion batteries were synthesized using an ultrasonic spray pyrolysis method. Cyclic voltammetry and cyclic stability tests were performed, and the changes of microstructure were observed. The solubility limit of zirconium into $Li_{1.1}CoO_2$ was less than 5 mol%, and monoclinic $Li_2ZrO_3$ phase was formed above the limit. The Zr-doping suppressed the grain growth and increased the lattice parameters of the hexagonal $LiCoO_2$ phase. The Zr-dopiong of 1mol% resulted in the best cyclic performance in the range of $3.0{\sim}4.3V$ at 1C rate (140 mA/g); the initial discharge capacity decreased from 158 mAh/g to 60 mAh/g in the undoped powder, while from 154 mAh/g to 135 mAh/g in the Zr-doped powder of 1 mol% after 30 cycles. The excellent cycle stability of Zr-doped powder was due to the low polarization during chargedischarge processes which resulted from the delayed collapse of the crystal structure of the active materials with Zr-doping.

Low Temperature Degradation Behavior for CaO Doped 2.5Y-TZP Ceramics (CaO를 첨가한 2.5Y-TZP 세라믹스의 저온열화 거동)

  • 박정현;이한주;문성환;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.341-346
    • /
    • 1992
  • The effects of CaO addition on the low temperature degradation behavior of 2.5Y-TZP ceramics were investigated. Y2O3-CaO-ZrO2 ceramics were prepared from the commercial Y-TZP powder added within 1 mol% of CaO. Fully tetragonal phase could be obtained at each composition under sintering condition of 1500$^{\circ}C$ for 1 hour. As the amount of CaO increased, grain size was decreased. From the result of heat treatment at 200$^{\circ}C$, volume fraction of monoclinic phase formed on the surface of each specimen was decreased with higher CaO amount. Stability of tetragonal ZrO2 phase for low temperature heat treatment was increased by CaO addition without the degradation of mechanical properties.

  • PDF

Dielectric property and conduction mechanism of ultrathin zirconium oxide films

  • Chang, J.P.;Lin, Y.S.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.61.1-61
    • /
    • 2003
  • Stoichiometric, uniform, amorphous ZrO$_2$ films with an equivalent oxide thickness of ∼1.5nm and a dielectric constant of ∼18 were deposited by an atomic layer controlled deposition process on silicon for potential application in meta-oxide-semiconductor(MOS) devices. The conduction mechanism is identified as Schottky emission at low electric fields and as Poole-Frenkel emission at high electric fields. the MOS devices showed low leakage current, small hysteresis(〈50mV), and low interface state density(∼2*10e11/cm2eV). Microdiffraction and high-resolution transmission electron microscopy showed a localized monoclinic phase of ${\alpha}$-ZrO$_2$ and an amorphous interfacial ZrSi$\_$x/O$\_$y/ layer which has a correspondign dielectric constant of 11

  • PDF

Preparation of $ZrO_2-CaO$ fiber by using a chemical solution process

  • Hwang, Kyu-Seog;Jeon, Young-Sun;Kim, Sang-Bok;Kim, Chi-Kyun;Oh, Jeong-Sun;An, Jun-Hyung;Kim, Byung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.267-271
    • /
    • 2003
  • In this work, chemical solution derived Ca-doped zirconia fiber has been prepared by using calcium- and zirconium-naphthenate. Fibrous $ZrO_2$-CaO was drawn from a sticky mixture. Dried gel fibers were finally annealed at $1000^{\circ}C$ for 1 h in argon. 91 mol%$ZrO_2$-9 mol%CaO fiber consisted of tetragonal, monoclinic and $CaZrO_3$ phases after annealing at $1000^{\circ}C$. On the other hand, samples annealed at $500^{\circ}C$ consisted of almost tetragonal single phase. Homogeneous fibers surface at $500^{\circ}C$ became rougher after $1000^{\circ}C$-annealing. The sample annealed at $1000^{\circ}C$ with relatively rough surface structure showed a high Calcium phocphate forming ability.

The Effect of Seeding on Preparation of $ZrO_2/Al_2O_3$ Composite by Sol-Gel Method (Sol-Gel법에 의한 $ZrO_2/Al_2O_3$ 복합체의 제조에 미치느 Seeding 효과)

  • 김선욱;주치홍;장윤식;손영국;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.571-577
    • /
    • 1993
  • The effect of $\alpha$-Al2O3 seeding on preparation of zirconia/alumina gel fragment prepared by sol-gel processing was characterized through XRD, SEM, TG/DTA and IR analysis. Aluminum isopropoxide and zirconium butoxide were used as starting materials. $\alpha$-Al2O3 seeding restrained grain growth of alumina and zirconia, and decreased tetragonal to monoclinic phase transformation of zirconia on cooling. Therefore, fine zirconia-toughened alumina composite having the relative sintered density of about 98% of theoretical at 140$0^{\circ}C$ for 2h could be obtained.

  • PDF

Effect of SiO2, Al2O3, and Clay Additions on the Sintering Characteristics of Zircon (Silica, Alumnia, Clay를 첨가한 지르콘의 소결특성에 미치는 영향)

  • Lee, Keun-Bong;Jung, Seung-Hwa;Lee, Ju-Sung;Hong, Gyung-Pyo;Jo, Bum-Rae;Moon, Jong-Su;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.352-356
    • /
    • 2008
  • Effect The effect of sintering additives ($SiO_2$, $Al_2O_3$, Clay) on the mechanical characteristics of sintered zircon was investigated. 1 vol% of additives in zircon powder was was sintered at $120{\sim}1500^{\circ}C$, the mechanical characteristics were measured, and microstructure analysis were was conducted. $Al_2O_3$ and clay additions increase the formation of monoclinic and tetragonal-$ZrO_2$ formation. An addition of SiO2 addition suppressed the formation of tetragonal-$ZrO_2$ formation., The A specimen sintered at $1400^{\circ}C$ showed the a density of $4.05\;g/cm^3$ and the a microhardness of 1120 HV, respectively.