• Title/Summary/Keyword: Monocarboxylates

Search Result 4, Processing Time 0.018 seconds

The Effects of Intracellular Monocarboxylates on the ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.581-589
    • /
    • 1998
  • A regulating mechanism of the ATP-sensitive potassium channels $(K_{ATP}\;channels)$ is yet to fully explained. This study was carried out to investigate the effects of intracellular application of monocarboxylates (acetate, formate, lactate, and pyruvate) on $K_{ATP}$ channels in isolated rabbit ventricular myocytes. Single channel currents of $K_{ATP}$ channels were recorded using the excised inside-out or permeabilized attached (open-cell) patch-clamp technique at room temperature. Intracellular application of acetate, formate and pyruvate led to an inhibition of channel activity, whereas intracellular application of lactate increased channel activity. These effects were reversible upon washout. Analysis of single channel kinetics showed that monocarboxylates did not affect open-time constant and close-time constant. These results suggest that monocarboxylates participate in modulating $K_{ATP}$ channels activity in cardiac cells and that modulation of $K_{ATP}$ channels activity may resolve the discrepancy between the low $K_i$ in excised membrane patches and high levels of intracellular ATP concentration during myocardial ischemia or hypoxia.

  • PDF

Succinate Transport in Rabbit Renal Basolateral Membrane Vesicles (가토 근위세뇨관 Basolateral Membrane Vesicle에서 Succinate 이동 특성)

  • Kim, Yong-Keun;Bae, Hae-Rahn;Rhim, Byung-Yong
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.307-318
    • /
    • 1988
  • Properties of succinate transport were examined in basolaterat membrane vesicles (BLMV) isolated from rabbit renal cortex. An inwardly directed $Na^+$ gradient stimulated succinate uptake and led to a transient overshoot. $K^+,{\;}Li^+,{\;}Rb^+$ and choline could not substitute for $Na^+$ in the uptake process. The dependence of the initial uptake rate of succinate on $Na^+$ concentration exhibited sigmoidal kinetics, indicating interaction of more than one $Na^+$ with transporter Hill coefficient for $Na^+$ was calculated to be 2.0. The $Na^+-dependent$ succinate uptake was electrogenic, resulting in the transfer of positive charge across the membrane. The succinate uptake into BLMV showed a pH optimum at external pH $7.5{\sim}8.0$, whereas succinate uptake into brush border membrane vesicles (BBMV) did not depend on external pH. Kinetic analysis showed that a Na-dependent succinate uptake in BLMV occurred via a single transport system, with an apparent Km of $15.5{\pm}0.94{\;}{\mu}M$ and Vmax of $16.22{\pm}0.25{\;}nmole/mg{\;}protein/min$. Succinate uptake was strongly inhibited by $4{\sim}5$ carbon dicarboxylates, whereas monocarboxylates and other organic anions showed a little or no effect. The succinate transport system preferred dicarboxylates in trans-configuration (furmarate) over cis-dicarboxylates (maleate). Succinate uptake was inhibited by the anion transport inhibitors DIDS, SITS and furosemide, and $Na^+-coupled$ transport inhibitor harmaline. These results indicate the existence of a $Na^+-dependent$ succinate transport system in BLMV that may be shared by the other Krebs cycle intemediates. This transport system seems to be very similar to the luminal transport system for dicarboxylates.

  • PDF

Investigation of Eu(Ⅲ)-Polyfunctional Organic Acid Complexes by Eu(Ⅲ) Luminescence Spectroscopy (Eu(Ⅲ) 발광 분광법을 이용한 Eu(Ⅲ)과 다가 유기산 착물 연구)

  • Lee, Byoung Ho;Shin, Hyun Sang;Moon, HiChung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.59-64
    • /
    • 1996
  • The 7F0→5D0excitation spectra of Eu(Ⅲ) complexed with polyfunctional monocarboxylic acid(glycolic acid, glycine and thioglycolic acid) containing a terminal O, N and S neutral donors and propionic acid were investigated using Eu(Ⅲ) luminescence spectroscopy. In the excitation spectra of Eu(Ⅲ)-propionate system, the stepwise appearance of the peaks was observed at 579.0, 579.2 and 579.5 nm with increasing in the ligand-to-metal ratio, which correspond to the formation of Eu(propionate)2+, Eu(propionate)2+ and Eu(propionate)3 species. Three maximum peaks were also obtained for Eu(Ⅲ)-glycolate, Eu(Ⅲ)-glycinate and Eu(Ⅲ)-thioglycolate systems and were found to be quite similar to those of Eu(Ⅲ)-propionate system. The q values (number of coordinated water molecules of Eu(Ⅲ) ion) obtained from the luminescence decay constants of Eu(Ⅲ)-glycolate and Eu(Ⅲ)-thioglycolate were 7.0 and 7.1, and compare well with 7.3 for Eu(Ⅲ)-propionate: Each ligand units replace around two coordinated water molecules. These results show that the polyfunctional monocarboxylates behaves like the propionate for Eu(Ⅲ) ion coordination.

  • PDF

Characterization of the Nature of Cd(II) Ion Binding Sites on Poly(acrylic acid) Using$^{113}Cd$NMR (카드뮴-113 NMR을 이용한 폴리아크릴산의 카드뮴(Ⅱ) 이온에 대한 결합자리의 특성연구)

  • Chung, Kun Ho;Koo, Ja-Eung;Shin, Hyun Sang;Moon, Hichung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.44-49
    • /
    • 1996
  • The cadmium(Ⅱ)-carboxylate complexes of monocarboxylates and poly(acrylic acid) (PAA) in an aqueous solution were investigated using 113Cd NMR spectroscopy. From these spectral data the chemical shifts of the monocarboxylate (e.g. acetate, benzoate and propanoate) complexes of Cd(Ⅱ) were evaluated (CdL+: -22 to -24 ppm range; CdL2: -39 to -40 ppm range; L: carboxylate). The chemical shift of cadmium(Ⅱ) bound on PAA changed in value from -36.6 to -38.2 ppm when the [PAA]/[Cd] ratios were varied from 12 to 118 eq/mol at a constant pH of 6. The 113Cd chemical shift was sensitive to the change in solution pH: the chemical shift changed from 1.6 to -37.6 ppm when the pH was rasied from 1 to 6 at a constant [PAA]/[Cd] ratio of 39 eq/mol. These results show that under these conditions, the dominant species formed in solution is 1 : 2 complex (CdL2), and 1 : 1 complex (CdL+) is only formed at low pH, when polyanion concentration is low.

  • PDF