• Title/Summary/Keyword: Monitoring in appliance-level

Search Result 5, Processing Time 0.024 seconds

Identification of In-Home Appliance Types Based on Analysis of Current Consumption Using Energy Metering Circuit

  • Tran, Tin Trung;Pham, Trung Xuan;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • One of the important applications of activity sensing in the home is energy monitoring. Many previous methodologies for detecting and recognizing household appliances have been proposed. This paper presents an approach that uses an energy metering circuit (EMC) to classify and identify the various electrical devices in home based on root-mean-square (RMS) consumed current value. EMC gathers the RMS current values created by appliance state transition (e.g., on to off) and apparatus operating process. In this paper, an identification algorithm is proposed to detect a change in current levels using the standard deviation of current signals and their average values. In addition, characteristic of the appliance is extracted concerning four feature parameters concerning the number of current levels, the minimum level, the maximum level, and signal-to-noise ratio (SNR) of them. Experiment results validate the reliable performance of the proposed identification method for 11 representative appliances.

Development of Home Electrical Power Monitoring System and Device Identification Algorithm (가정용 전력 모니터링 시스템 및 장치식별 알고리즘 개발)

  • Park, Sung-Wook;Seo, Jin-Soo;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper presents an electrical power monitoring system for home energy management and an automatic appliance-identification algorithm based on the electricity-usage patterns collected during the monitoring tests. This paper also discusses the results of the field tests of which the proposed system was voluntarily deployed at 13 homes. The proposed monitoring system periodically measures the amount of power consumption of each appliance with a pre-specified time interval and effectively displays the essential information provided by the monitored data which is required users to know in order to save power consumption. Regarding the field tests of the monitoring system, the households responded that the system was useful in saving electricity and especially the electricity-usage patterns per appliances. They also considered that the predicted amount of the monthly power consumption was effective. The proposed appliance-identification algorithm uses 4 patterns: Zero-Crossing Rate(ZC), Variation of On State(VO), Slope of On State(SO) and Duty Cycle(DC), which are applied over the 2 hour interval with 25% of it on state, and it yielded 82.1% of success rate in identifying 5 kinds of appliances: refrigerator, TV, electric rice-cooker, kimchi-refrigerator and washing machine.

Algorithm of Analysing Electric Power Signal for Home Electric Power Monitoring in Non-Intrusive Way (가정용 전력 모니터링을 위한 전력신호 분석 알고리즘 개발)

  • Park, Sung-Wook;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.679-685
    • /
    • 2011
  • This paper presents an algorithm identifying devices that generate observed mixed signals that are collected at main power-supply line. The proposed algorithm, which is necessary for low cost electric power monitoring system at appliance-level, that is non-intrusive load monitoring system, divides incoming mixed signal into multiple time intervals, calculating difference-signals between consecutive time interval, and identifies which device is operating at the time interval by analysing the difference-signals. Since the features of one device can remain when the time interval is short enough and the features are independent and additive, well-known classification algorithms can be used to classify the difference-signals with features of N individual devices, otherwise $2^N$ features might be necessary. The proposed algorithm was verified using data mixed in a laboratory with individual devices's data collected from field. When maximum 4 devices operate or stop sequentially and when features satisfy the requirements of proposed algorithm, the proposed algorithm resulted nearly 100% success rate under the constrained test condition. In order to apply the proposed algorithm in real world, the number devices shall increase, the time interval shall be smaller and the pattern of mixture shall be more diverse. However we can expect, if features used follow guidelines of proposed algorithm, future system could have certain level of performance without the guideline.

Implementation of Human Positioning Monitoring Device for Underwater Safety (수중안전을 위한 인체 위치추적 모니터링 장치 구현)

  • Jong-Hwa Yoon;Dal-Hwan Yoon
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.225-233
    • /
    • 2023
  • This paper implements a system that monitors human body lifting information in the event of a marine accident. The monitoring system performs ultrasonic communication through a lifting device controller that transmits underwater environment information, and LoRa communication is performed on the water to provide GPS information within 10 km to the control center or mother ship. The underwater lifting controller transmits pneumatic sensor, gyro sensor, and temperature sensor information. In an environment where the underwater conditions increase by one atmosphere of water pressure every 10m in depth, and the amount of air in the instrument decreases by half compared to land, a model of a 60kg underwater mannequin is used. Using one 38g CO2 cartridge in the lifting appliance SMB(Surface Maker Buoy), carry out a lifting appliance discharge test based on the water level rise conditions within 10 sec. Underwater communication constitutes a data transmission environment using a 2,400-bps ultrasonic sensor from a depth of 40m to 100m. The monitoring signal aims to ensure the safety and safe human structure of the salvage worker by providing water depth, water temperature, and directional angle to rescue workers on the surface of the water.

TriSec: A Secure Data Framework for Wireless Sensor Networks Using Authenticated Encryption

  • Kumar, Pardeep;Cho, Sang-Il;Lee, Dea-Seok;Lee, Young-Dong;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Wireless sensor networks (WSNs) are an emerging technology and offers economically viable monitoring solution to many challenging applications. However, deploying new technology in hostile environment, without considering security in mind has often proved to be unreasonably unsecured. Apparently, security techniques face many critical challenges in WSNs like data security and secrecy due to its hostile deployment nature. In order to resolve security in WSNs, we propose a novel and efficient secure framework called TriSec: a secure data framework for wireless sensor networks to attain high level of security. TriSec provides data confidentiality, authentication and data integrity to sensor networks. TriSec supports node-to-node encryption using PingPong-128 stream cipher based-privacy. A new PingPong-MAC (PP-MAC) is incorporated with PingPong stream cipher to make TriSec framework more secure. PingPong-128 is fast keystream generation and it is very suitable for sensor network environment. We have implemented the proposed scheme on wireless sensor platform and our result shows their feasibility.