• Title/Summary/Keyword: Monitoring algorithm

Search Result 1,835, Processing Time 0.031 seconds

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

Research on data augmentation algorithm for time series based on deep learning

  • Shiyu Liu;Hongyan Qiao;Lianhong Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1530-1544
    • /
    • 2023
  • Data monitoring is an important foundation of modern science. In most cases, the monitoring data is time-series data, which has high application value. The deep learning algorithm has a strong nonlinear fitting capability, which enables the recognition of time series by capturing anomalous information in time series. At present, the research of time series recognition based on deep learning is especially important for data monitoring. Deep learning algorithms require a large amount of data for training. However, abnormal sample is a small sample in time series, which means the number of abnormal time series can seriously affect the accuracy of recognition algorithm because of class imbalance. In order to increase the number of abnormal sample, a data augmentation method called GANBATS (GAN-based Bi-LSTM and Attention for Time Series) is proposed. In GANBATS, Bi-LSTM is introduced to extract the timing features and then transfer features to the generator network of GANBATS.GANBATS also modifies the discriminator network by adding an attention mechanism to achieve global attention for time series. At the end of discriminator, GANBATS is adding averagepooling layer, which merges temporal features to boost the operational efficiency. In this paper, four time series datasets and five data augmentation algorithms are used for comparison experiments. The generated data are measured by PRD(Percent Root Mean Square Difference) and DTW(Dynamic Time Warping). The experimental results show that GANBATS reduces up to 26.22 in PRD metric and 9.45 in DTW metric. In addition, this paper uses different algorithms to reconstruct the datasets and compare them by classification accuracy. The classification accuracy is improved by 6.44%-12.96% on four time series datasets.

Verifying Execution Prediction Model based on Learning Algorithm for Real-time Monitoring (실시간 감시를 위한 학습기반 수행 예측모델의 검증)

  • Jeong, Yoon-Seok;Kim, Tae-Wan;Chang, Chun-Hyon
    • The KIPS Transactions:PartA
    • /
    • v.11A no.4
    • /
    • pp.243-250
    • /
    • 2004
  • Monitoring is used to see if a real-time system provides a service on time. Generally, monitoring for real-time focuses on investigating the current status of a real-time system. To support a stable performance of a real-time system, it should have not only a function to see the current status of real-time process but also a function to predict executions of real-time processes, however. The legacy prediction model has some limitation to apply it to a real-time monitoring. First, it performs a static prediction after a real-time process finished. Second, it needs a statistical pre-analysis before a prediction. Third, transition probability and data about clustering is not based on the current data. We propose the execution prediction model based on learning algorithm to solve these problems and apply it to real-time monitoring. This model gets rid of unnecessary pre-processing and supports a precise prediction based on current data. In addition, this supports multi-level prediction by a trend analysis of past execution data. Most of all, We designed the model to support dynamic prediction which is performed within a real-time process' execution. The results from some experiments show that the judgment accuracy is greater than 80% if the size of a training set is set to over 10, and, in the case of the multi-level prediction, that the prediction difference of the multi-level prediction is minimized if the number of execution is bigger than the size of a training set. The execution prediction model proposed in this model has some limitation that the model used the most simplest learning algorithm and that it didn't consider the multi-regional space model managing CPU, memory and I/O data. The execution prediction model based on a learning algorithm proposed in this paper is used in some areas related to real-time monitoring and control.

Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring (농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1343-1356
    • /
    • 2022
  • Clouds or shadows are the most problematic when monitoring crops using optical satellite images. To reduce this effect, a composite algorithm was used to select the maximum Normalized Difference Vegetation Index (NDVI) for a certain period. This Maximum NDVI Composite (MNC) method reduces the influence of clouds, but since only the maximum NDVI value is used for a certain period, it is difficult to show the phenomenon immediately when the NDVI decreases. As a way to maintain the spectral information of crop as much as possible while minimizing the influence of clouds, a Score-Based Composite (SBC) algorithm was proposed, which is a method of selecting the most suitable pixels by defining various environmental factors and assigning scores to them when compositing. In this study, the Sentinel-2A/B Level 2A reflectance image and cloud, shadow, Aerosol Optical Thickness(AOT), obtainging date, sensor zenith angle provided as additional information were used for the SBC algorithm. As a result of applying the SBC algorithm with a 15-day and a monthly period for Dangjin rice fields and Taebaek highland cabbage fields in 2021, the 15-day period composited data showed faster detailed changes in NDVI than the monthly composited results, except for the rainy season affected by clouds. In certain images, a spatially heterogeneous part is seen due to partial date-by-date differences in the composited NDVI image, which is considered to be due to the inaccuracy of the cloud and shadow information used. In the future, we plan to improve the accuracy of input information and perform quantitative comparison with MNC-based composite algorithm.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Algorithm of Detecting Ground Fault by Using Insulation Monitoring Device(IMD) in Ungrounded DC System (직류 비접지계통에서 절연저항측정장치(IMD)를 이용한 사고검출 알고리즘)

  • Kim, Ki-Young;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.528-535
    • /
    • 2020
  • Recently, the protection coordination method of DC systems has been presented because renewable energy and distributed resources are being installed and operated in distribution systems. On the other hand, it is difficult to detect ground faults because there is no significant difference compared to a steady-state current in ungrounded IT systems, such as DC load networks and urban railways. Therefore, this paper formulates the detection principle of IMD (Insulation Monitoring Device) to use it as a protection coordination device in a DC system. Based on the signal injection method of IMD, which is analyzed by a wavelet transform, this paper presents an algorithm of detecting ground faults in a DC system in a fast and accurate manner. In addition, this paper modeled an IMD and an ungrounded DC system using the PSCAD/EMTDC S/W and performed numerical analysis of a wavelet transform with the Matlab S/W. The simulation results of a ground fault case in an ungrounded DC system showed that the proposed algorithm and modeling are useful and practical tools for detecting a ground fault in a DC system.

Development of Urban Wildlife Detection and Analysis Methodology Based on Camera Trapping Technique and YOLO-X Algorithm (카메라 트래핑 기법과 YOLO-X 알고리즘 기반의 도시 야생동물 탐지 및 분석방법론 개발)

  • Kim, Kyeong-Tae;Lee, Hyun-Jung;Jeon, Seung-Wook;Song, Won-Kyong;Kim, Whee-Moon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.4
    • /
    • pp.17-34
    • /
    • 2023
  • Camera trapping has been used as a non-invasive survey method that minimizes anthropogenic disturbance to ecosystems. Nevertheless, it is labor-intensive and time-consuming, requiring researchers to quantify species and populations. In this study, we aimed to improve the preprocessing of camera trapping data by utilizing an object detection algorithm. Wildlife monitoring using unmanned sensor cameras was conducted in a forested urban forest and a green space on a university campus in Cheonan City, Chungcheongnam-do, Korea. The collected camera trapping data were classified by a researcher to identify the occurrence of species. The data was then used to test the performance of the YOLO-X object detection algorithm for wildlife detection. The camera trapping resulted in 10,500 images of the urban forest and 51,974 images of green spaces on campus. Out of the total 62,474 images, 52,993 images (84.82%) were found to be false positives, while 9,481 images (15.18%) were found to contain wildlife. As a result of wildlife monitoring, 19 species of birds, 5 species of mammals, and 1 species of reptile were observed within the study area. In addition, there were statistically significant differences in the frequency of occurrence of the following species according to the type of urban greenery: Parus varius(t = -3.035, p < 0.01), Parus major(t = 2.112, p < 0.05), Passer montanus(t = 2.112, p < 0.05), Paradoxornis webbianus(t = 2.112, p < 0.05), Turdus hortulorum(t = -4.026, p < 0.001), and Sitta europaea(t = -2.189, p < 0.05). The detection performance of the YOLO-X model for wildlife occurrence was analyzed, and it successfully classified 94.2% of the camera trapping data. In particular, the number of true positive predictions was 7,809 images and the number of false negative predictions was 51,044 images. In this study, the object detection algorithm YOLO-X model was used to detect the presence of wildlife in the camera trapping data. In this study, the YOLO-X model was used with a filter activated to detect 10 specific animal taxa out of the 80 classes trained on the COCO dataset, without any additional training. In future studies, it is necessary to create and apply training data for key occurrence species to make the model suitable for wildlife monitoring.

Design of ICT-based Agricultural Safety Monitoring System Models

  • Kim, Insoo;Lee, Kyung-Suk;Chae, Hye-Seon;Seo, Min-Tea
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • Objective: This study carried out base research to build an agricultural safety monitoring system through ICT convergence to reduce safety accidents and enhance welfare in life in the agricultural field. Background: The functions and values of rural villages as the space of living are recognized anew, but occupational accident rate due to farm work accidents is on the rise each year. Therefore, the seriousness of such a problem emerges. The convergence technology combining ICT is recently applied to industries overall, and therefore better services are offered. However, studies on ICT convergence has not yet been applied to the agricultural safety field. Method: This study identified ICT convergence service technology trends and representative serious accident types mainly occurring in agricultural activities. This study defined the major factors of farm work accidents and ICT to solve those accident factors including the sensor technology, wired/wireless communication technology and location information service, and applied them to prototype PCB for the development of an agricultural safety monitoring system. Results: This study proposed an emergency monitoring system for farmers and a harmful environment monitoring system. The ICT technology to prevent farm work accidents can be summarized as sensing technology, ICT and network technology and user interface technology. This study also designed PCB module configuration and situation judgment algorithm as basic research for proposed monitoring system development. Conclusion: The ICT-based agricultural safety monitoring research proposed in this study is expected to become the basis to build a future real time monitoring system, and also is expected to contribute to social safety and welfare service improvement for farmers. Application: The ICT convergence farmer accident prevention system will make contributions to the prevention of serious farm work accidents.

Analysis of the Connectivity of Monitoring Nodes and the Coverage of Normal Nodes for Behavior-based Attack Detection in Wireless Sensor Networks (무선 센서 네트워크에서 행위 기반 공격 탐지를 위한 감시 노드의 연결성과 일반 노드의 커버리지 분석)

  • Chong, Kyun-Rak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.27-34
    • /
    • 2013
  • In wireless sensor networks, sensors need to communicate with each other to send their sensing data to the administration node and so they are susceptible to many attacks like garbage packet injection that cannot be prevented by using traditional cryptographic approaches. A behavior-based detection is used to defend against such attacks in which some specialized monitoring nodes overhear the communications of their neighbors to detect bad packets. As monitoring nodes use more energy, it is desirable to use the minimal number of monitoring nodes to cover the whole or maximal part of the network. The monitoring nodes can either be selected among the deployed normal nodes or differ in type from normal nodes. In this study, we have developed an algorithm for selecting the predefined number of monitoring nodes needed to cover the maximum number of normal nodes when the different types of normal nodes and monitoring nodes are deployed. We also have investigated experimentally how the number of monitoring nodes and their transmission range affect the connection ratio of the monitoring nodes and the coverage of the normal nodes.

Study on Vacuum Pump Monitoring Using MPCA Statistical Method (MPCA 기반의 통계기법을 이용한 진공펌프 상태진단에 관한 연구)

  • Sung D.;Kim J.;Jung W.;Lee S.;Cheung W.;Lim J.;Chung K.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.338-346
    • /
    • 2006
  • In semiconductor process, it is so hard to predict an exact failure point of the vacuum pump due to its harsh operation conditions and nonlinear properties, which may causes many problems, such as production of inferior goods or waste of unnecessary materials. Therefore it is very urgent and serious problem to develop diagnostic models which can monitor the operation conditions appropriately and recognize the failure point exactly, indicating when to replace the vacuum pump. In this study, many influencing factors are totally considered and eventually the monitoring model using multivariate statistical methods is suggested. The pivotal algorithms are Multiway Principal Component Analysis(MPCA), Dynamic Time Warping Algorithm(DTW Algorithm), etc.