• Title/Summary/Keyword: Monitoring algorithm

Search Result 1,835, Processing Time 0.036 seconds

ICT based Wireless Power Transmission System Development (ICT 기반의 무선전력전송 시스템 개발)

  • Lee, Jong-Hee;Bang, Junho;Chun, Hyun-Jun;Seo, Beom-Geun;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • Recently, wireless power transmission has attracted much interest and is the subject of much research in industry and academia. As its name implies, it is a technology which involves transferring power without wires. This paper presents the design of an ICT-based wireless power transmission system. The proposed system consists of a wireless transceiver unit and high-efficiency coil unit, which can increase both the transmission efficiency and the effective power distance. In particular, the wireless transceiver unit was designed to work with the ICT technique to enable real-time remote monitoring. Also, studies were done relating to the effect of reducing the standby power. The optimal frequency of IGBT devices used in industrial wireless power systems of 20[KHz] was utilized. The values of $23.9[{\mu}H]$ and $2.64[{\mu}F]$ were selected for L and C, respectively, through many field experiments designed to optimize the system design. In addition, an output current controlling algorithm was developed for the purpose of reducing the standby power. The results presented in this paper represent a 75[%] to 85[%] higher power transmission efficiency with a 10[%] increase in the effective power transmission distance compared with the existing systems. As a result, the proposed system exhibits a lower standby power and maintenance costs. Also, the designed wireless transceiver unit facilitates fault detection by means of user acquired data with the development of the ICT applied program.

A Neural Network-Based Tracking Method for the Estimation of Hazardous Gas Release Rate Using Sensor Network Data (센서네트워크 데이터를 이용하여 독성물질 누출속도를 예측하기 위한 신경망 기반의 역추적방법 연구)

  • So, Won;Shin, Dong-Il;Lee, Chang-Jun;Han, Chong-Hun;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.38-41
    • /
    • 2008
  • In this research, we propose a new method for tracking the release rate using the concentration data obtained from the sensor. We used a sensor network that has already been set surrounding the area where hazardous gas releases can occur. From the real-time sensor data, we detected and analyzed releases of harmful materials and their concentrations. Based on the results, the release rate is estimated using the neural network. This model consists of 14 input variables (sensor data, material properties, process information, meteorological conditions) and one output (release rate). The dispersion model then performs the simulation of the expected dispersion consequence by combining the sensor data, GIS data and the diagnostic result of the source term. The result of this study will improve the safety-concerns of residents living next to storage facilities containing hazardous materials by providing the enhanced emergency response plan and monitoring system for toxic gas releases.

  • PDF

Application of Landsat TM/ETM+ Images to Snow Variations Detection by Volcanic Activities at Southern Volcanic Zone, Chile (Landsat TM/ETM+ 위성영상을 활용한 칠레 Southern Volcanic Zone의 화산과 적설변화와의 상관성 연구)

  • Kim, Jeong-Cheol;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.287-299
    • /
    • 2017
  • The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, including the Mt.Villarrica and Mt.Llaima, and the two volcanoes are covered with snow at the top of Mountain. The purpose of this study is to analyze the relationship between the ice caps and the volcanic activity of the two volcanoes for 25 years by using the satellite image data are available in a time series. A total of 60 Landsat-5 TM and Landsat-7 ETM + data were used for the study from September 1986 to February 2011. Using NDSI (Normalized Difference Snow Index) algorithm and SRTM DEM, snow cover and snowline were extracted. Finally, the snow cover area, lower-snowline, and upper-snowline, which are quantitative indicators of snow cover change, were directly or indirectly affected by volcanic activity, were extracted from the satellite images. The results show that the volcanic activity of Villarrica volcano is more than 55% when the snow cover is less than 20 and the lower-snowline is 1,880 m in Llaima volcano. In addition, when the upper-snowline of the two volcanoes is below -170m, it can be confirmed that the volcano is differentiated with a probability of about 90%. Therefore, the changes in volcanic snowfall are closely correlated with volcanic activity, and it is possible to indirectly deduce volcanic activity by monitoring the snow.

Classification Tree Analysis to Assess Contributing Factors Influencing Biosecurity Level on Farrow-to-Finish Pig Farms in Korea (분류 트리 기법을 이용한 국내 일괄사육 양돈장의 차단방역 수준에 영향을 미치는 기여 요인 평가)

  • Kim, Kyu-Wook;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.33 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • The objective of this study was to determine potential contributing factors associated with biosecurity level of farrow-to-finish pig farms and to develop a classification tree model to explore how these factors related to each other based on prediction model. To this end, the author analyzed data (n = 193) extracted from a cross-sectional study of 344 farrow-to-finish farms which was conducted between March and September 2014 aimed to explore swine disease status at farm level. Standardized questionnaires with information about basic demographical data and management practices were collected in each farm by on-site visit of trained veterinarians. For the classification of the data sets regarding biosecurity level as a dependent variable and predictor variables, Chi-squared Automatic Interaction Detection (CHAID) algorithm was applied for modeling classification tree. The statistics of misclassification risk was used to evaluate the fitness of the model in terms of prediction results. Categorical multivariate input data (40 variables) was used to construct a classification tree, and the target variable was biosecurity level dichotomized into low versus high. In general, the level of biosecurity was lower in the majority of farms studied, mainly due to the limited implementation of on-farm basic biosecurity measures aimed at controlling the potential introduction and transmission of swine diseases. The CHAID model illustrated the relative importance of significant predictors in explaining the level of biosecurity; maintenance of medical records of treatment and vaccination, use of dedicated clothing to enter the farm, installing fence surrounding the farm perimeter, and periodic monitoring of the herd using written biosecurity plan in place. The misclassification risk estimate of the prediction model was 0.145 with the standard error of 0.025, indicating that 85.5% of the cases could be classified correctly by using the decision rule based on the current tree. Although CHAID approach could provide detailed information and insight about interactions among factors associated with biosecurity level, further evaluation of potential bias intervened in the course of data collection should be included in future studies. In addition, there is still need to validate findings through the external dataset with larger sample size to improve the external validity of the current model.

Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction (시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축)

  • KANG, KI-MOOK;KIM, DUK-JIN;HWANG, JI-HWAN;CHOI, CHANGHYUN;NAM, SUNGHYUN;KIM, SEONGJUNG;CHO, YANG-KI;BYUN, DO-SEONG;LEE, JOOYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.57-68
    • /
    • 2017
  • Continuous monitoring of spatial and temporal changes in key marine environmental parameters such as SST (sea surface temperature) near IORS (Ieodo Ocean Research Station) is demanded to investigate the ocean ecosystem, climate change, and sea-air interaction processes. In this study, we aimed to develop the system for continuously measuring SST using a TIR (thermal infrared) sensor mounted at the IORS. New SST algorithm is developed to provide SST of better quality that includes automatic atmospheric correction and emissivity calculation for different oceanic conditions. Then, the TIR-based SST products were validated against in-situ water temperature measurements during May 17-26, 2015 and July 15-18, 2015 at the IORS, yielding the accuracy of 0.72-0.85 R-square, and $0.37-0.90^{\circ}C$ RMSE. This TIR-based SST observing system can be installed easily at similar Ocean Research Stations such as Sinan Gageocho and Ongjin Socheongcho, which provide a vision to be utilized as calibration site for SST remotely sensed from satellites to be launched in future.

Development the Geostationary Ocean Color Imager (GOCI) Data Processing System (GDPS) (정지궤도 해색탑재체(GOCI) 해양자료처리시스템(GDPS)의 개발)

  • Han, Hee-Jeong;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.239-249
    • /
    • 2010
  • The Geostationary Ocean Color Imager (GOCI) data-processing system (GDPS), which is a software system for satellite data processing and analysis of the first geostationary ocean color observation satellite, has been developed concurrently with the development of th satellite. The GDPS has functions to generate level 2 and 3 oceanographic analytical data, from level 1B data that comprise the total radiance information, by programming a specialized atmospheric algorithm and oceanic analytical algorithms to the software module. The GDPS will be a multiversion system not only as a standard Korea Ocean Satellite Center(KOSC) operational system, but also as a basic GOCI data-processing system for researchers and other users. Additionally, the GDPS will be used to make the GOCI images available for distribution by satellite network, to calculate the lookup table for radiometric calibration coefficients, to divide/mosaic several region images, to analyze time-series satellite data. the developed GDPS system has satisfied the user requirement to complete data production within 30 minutes. This system is expected to be able to be an excellent tool for monitoring both long-term and short-term changes of ocean environmental characteristics.

A Pilot Study on Environmental Understanding and Estimation of the Nak-Dong River Basin Using Fuyo-1 OPS Data (Fuyo-1 OPS 자료를 이용한 낙동강 하류지역의 환경계측 시고)

  • Kim, Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.169-198
    • /
    • 1996
  • The objectives of this investigation are : 1. To analyze spectral signature and the associated vegetation index for geometric illumination conditions inf1uenced by low solar elevation and high slope orientations in mountainous forest. 2. To assess the accuracy of the spectral angle mapper classification for the a winter land cover in comparison with the maximum likelihood classification. 3. To produce the image of water quality and water properties that could be used to estimate the water pollution sources and the tide-included by turbid water in estuarine and coastal areas. These objectives are to characterize environmental and ecological monitoring applications of the Nak-Dong River Basin by using Fuyo-1 OPS VNIR data acquired on December 26, 1992. The results of this paper are as follows : 1. The spectral digital numbers and vegetation indexes (NDVI and TVI) of mountainous forest are higher on the slope facing the sun than on the slope hidden the sun under low sun elevation condition. 2. The spectral angle mapper algorithm produces a more accurate land cover classification of areas with steep slope, various aspects and low solar elevation than the maximum likelihood classifier. 3. The maximum likelihood classification images can be used for identifying the location and movement of both freshwater and salt water, regardless of geometric illumination conditions. 4. The color-coded density sliced image of selected water bodies by using the near-infrared band 3 can provide distribution of the water quality of the Lower Nak-Dong River. 5. The color-coded normalized difference vegetation index image of the selected mountain forest is suitable to classify winter vegetation cover types, i.e., forest canopy densities for slope orientations.

Analysis of the Cloud Removal Effect of Sentinel-2A/B NDVI Monthly Composite Images for Rice Paddy and High-altitude Cabbage Fields (논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석)

  • Eun, Jeong;Kim, Sun-Hwa;Kim, Taeho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1545-1557
    • /
    • 2021
  • Crops show sensitive spectral characteristics according to their species and growth conditions and although frequent observation is required especially in summer, it is difficult to utilize optical satellite images due to the rainy season. To solve this problem, Constrained Cloud-Maximum Normalized difference vegetation index Composite (CC-MNC) algorithm was developed to generate periodic composite images with minimal cloud effect. In thisstudy, using this method, monthly Sentinel-2A/B Normalized Difference Vegetation Index (NDVI) composite images were produced for paddies and high-latitude cabbage fields from 2019 to 2021. In August 2020, which received 200mm more precipitation than other periods, the effect of clouds, was also significant in MODIS NDVI 16-day composite product. Except for this period, the CC-MNC method was able to reduce the cloud ratio of 45.4% of the original daily image to 14.9%. In the case of rice paddy, there was no significant difference between Sentinel-2A/B and MODIS NDVI values. In addition, it was possible to monitor the rice growth cycle well even with a revisit cycle 5 days. In the case of high-latitude cabbage fields, Sentinel-2A/B showed the short growth cycle of cabbage well, but MODIS showed limitations in spatial resolution. In addition, the CC-MNC method showed that cloud pixels were used for compositing at the harvest time, suggesting that the View Zenith Angle (VZA) threshold needsto be adjusted according to the domestic region.

Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network

  • Wu, Guohua;Tong, Jiejuan;Zhang, Liguo;Yuan, Diping;Xiao, Yiqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2534-2546
    • /
    • 2021
  • Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.

Development of Ubiquitous Sensor Network Quality Control Algorithm for Highland Cabbage (고랭지배추 생육을 위한 유비쿼터스 센서 네트워크 품질관리 알고리즘 개발)

  • Cho, Changje;Hwang, Guenbo;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • Weather causes much of the risk of agricultural activity. For efficient farming, we need to use weather information. Modern agriculture has been developed to create high added value through convergence with state-of-the-art Information and Communication Technology (ICT). This study deals with the quality control algorithms of weather monitoring equipment through Ubiquitous Sensor Network (USN) observational equipment for efficient cultivation of cabbage. Accurate weather observations are important. To achieve this goal, the Korea Meteorological Administration, for example, developed various quality control algorithms to determine regularity of the observation. The research data of this study were obtained from five USN stations, which were installed in Anbandegi and Gwinemi from 2015 to 2017. Quality control algorithms were developed for flat line check, temporal outliers check, time series consistency check and spatial outliers check. Finally, the quality control algorithms proposed in this study can also identify potential abnormal observations taking into account the temporal and spatial characteristics of weather data. It is expected to be useful for efficient management of highland cabbage production by providing quality-controlled weather data.