• Title/Summary/Keyword: Monitoring algorithm

Search Result 1,835, Processing Time 0.03 seconds

Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders

  • Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.881-901
    • /
    • 2016
  • In this study, a method to compensate the effect of temperature variation on impedance responses which are used for prestress-loss monitoring in prestressed concrete (PSC) girders is presented. Firstly, an impedance-based technique using a mountable lead-zirconate-titanate (PZT) interface is presented for prestress-loss monitoring in the local tendon-anchorage member. Secondly, a cross-correlation-based algorithm to compensate the effect of temperature variation in the impedance signatures is outlined. Thirdly, lab-scale experiments are performed on a PSC girder instrumented with a mountable PZT interface at the tendon-anchorage. A series of temperature variation and prestress-loss events are simulated for the lab-scale PSC girder. Finally, the feasibility of the proposed method is experimentally verified for prestress-loss monitoring in the PSC girder under temperature-varying conditions and prestress-loss events.

Power Quality Monitoring System with a New Distributed Monitoring Structure

  • Won, Dong-Jun;Chung, Il-Yop;Kim, Joong-Moon;Ahn, Seon-Ju;Moon, Seung-Il;Seo, Jang-Cheol;Choe, Jong-Woong
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.214-220
    • /
    • 2004
  • Power quality monitoring is the cornerstone for power quality analysis, diagnosis and improvement. The measurement of power quality (PQ) evolves from instantaneous metering to continuous monitoring. Furthermore, recent technologies enable us to construct more flexible, reliable, rapid and economical power quality monitoring system (PQMS). Therefore, this paper presents an improved PQMS with a new distributed monitoring structure. The proposed PQMS consists of a PQ meter, PQ analyzer and GUI. The PQ meter only collects raw data and the PQ analyzer performs power quality analysis. It has several advantages compared to conventional structures in economic efficiency, modularity, speed, etc. PQ monitoring algorithms to catch steady-state trends and to detect PQ events are also adapted to the proposed structure. Using the proposed structure and monitoring algorithm, a prototype PQMS is constructed and real-time testing is performed.

Development of Home Electrical Power Monitoring System and Device Identification Algorithm (가정용 전력 모니터링 시스템 및 장치식별 알고리즘 개발)

  • Park, Sung-Wook;Seo, Jin-Soo;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper presents an electrical power monitoring system for home energy management and an automatic appliance-identification algorithm based on the electricity-usage patterns collected during the monitoring tests. This paper also discusses the results of the field tests of which the proposed system was voluntarily deployed at 13 homes. The proposed monitoring system periodically measures the amount of power consumption of each appliance with a pre-specified time interval and effectively displays the essential information provided by the monitored data which is required users to know in order to save power consumption. Regarding the field tests of the monitoring system, the households responded that the system was useful in saving electricity and especially the electricity-usage patterns per appliances. They also considered that the predicted amount of the monthly power consumption was effective. The proposed appliance-identification algorithm uses 4 patterns: Zero-Crossing Rate(ZC), Variation of On State(VO), Slope of On State(SO) and Duty Cycle(DC), which are applied over the 2 hour interval with 25% of it on state, and it yielded 82.1% of success rate in identifying 5 kinds of appliances: refrigerator, TV, electric rice-cooker, kimchi-refrigerator and washing machine.

Design and Implementation of Biological Signal Measurement Algorithm for Remote Patient Monitoring based on IoT (IoT기반 원격환자모니터링을 위한 생체신호 측정 알고리즘 설계 및 구현)

  • Jung, Ae-Ran;You, Yong-Min;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.957-966
    • /
    • 2018
  • Recently, the demand for remote patient monitoring based on IoT has been increased due to aging population and an increase in single-person household. A non-contact biological signal measurement system using multiple IR-UWB radars for remote patient monitoring is proposed in this paper. To reduce error signals, a multilayer Subtraction algorithm is applied because when the background subtraction algorithm was applied to the biological signal processing, errors occurred such as voltage noise and staircase phenomenon. Therefore, a multilayer background subtraction algorithm is applied to reduce error occurrence. The multilayer background subtraction algorithm extracts the signal by calculating the amount of change between the previous clutter and the current clutter. In this study, the SVD algorithm is used. We applied the improved multilayer background subtraction algorithm to biological signal measurement and computed the respiration rate through Fast Fourier Transform (FFT). To verify the proposed system using IR-UWB radars and multilayer background subtraction algorithm, the respiration rate was measured. The validity of this study was verified by obtaining a precision of 97.36% as a result of a control experiment with Neulog's attachment type breathing apparatus. The implemented algorithm improves the inconvenience of the existing contact wearable method.

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.

Transmission status monitoring method for improving the performance of MPTCP in Bufferbloat environment (Bufferbloat 환경에서 MPTCP 성능 개선을 위한 전송 상태 모니터링 방법)

  • Jung, Il Hyung;Lee, Jae Yong;Kim, Byung Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.259-269
    • /
    • 2018
  • Multipath TCP (MPTCP) can be expected to provide improved network performance because it transmits data through multiple paths. However, Bufferbloat, which unexpectedly occurs in the transmission path, degrades not only the performance of the corresponding path but also the performance of other paths, so that the performance is worse than that of a single TCP. In this paper, we propose the transmission status monitoring method at the sender's MPTCP level and also HoL packets retransmission algorithm in order to solve the Bufferbloat problem. The proposed algorithm enables Bufferbloat detection by the sender side independently, and it can resolve the HoL blocking problem by identifying the HoL packet in the proposed transmission status monitoring buffer and retransmitting it to the normal path. Simulation results based on NS-3 show that the proposed algorithm achieves the improved throughput performance up to 22.8% compared to the existing MPTCP, and the average number of queued packets in the sender and receiver's buffers is decreased to 44.3% and 9.2%, respectively.

Train detection in railway platform area using image processing technology (영상처리를 이용한 철도 승강장 영역에서의 열차상태 검지방법)

  • Oh, Sehchan;Yoon, Yongki;Baek, Jonghyun;Jo, Hyunjeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6098-6104
    • /
    • 2012
  • Currently, dozens of CCTVs are widely used in railway station for monitoring passengers in danger and security areas. The most frequent accidents occur at the platform area where passengers boarding the train. However, It is almost impossible that station operator monitors dozens of CCTV screens and recognizes immediately accidents and handle them. Therefore, railway platform monitoring system using image processing technology which automatically detects platform accidents is needed, and in order to that, preferentially, accurate determination of train state in the platform is required. In the paper, we propose train state detection algorithm for vision based railway platform monitoring system. the proposed algorithm determines four different states i.e. trains approach(IN), departure(OUT), stop(ON), and empty(OFF) of the train, in the platform. To evaluate the proposed algorithm, we present the train detection results for the Seoul Metro Line 4 Dongjak and Namtaeryeong Station.

Development of the Stereo Camera System for Active Remote Monitoring (능동적 원격감시를 위한 스테레오 카메라 시스템의 개발)

  • Park, K.;Cho, D. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.437-441
    • /
    • 1997
  • In the conventional remote monitoring system, a user in front of a computer monitor can acquire only 2 dimensional visual information in a passive way. Thus, even thoght the user finds an interesting object from the video image, helshe can hardly acquire additional information on the object such as name. 311 shape, etc. In this paper, an active monitoring system that shows additional information on the selected object is proposed. The active remote monitoring system can calculate the 3D position of the object that is selected in the video images. Then, using the 3D position of the object, other information on the object can be retrieved from the database and shown on the screen. To calculate the 3D position of the object, 2 CCD cameras that can be tilted and panned using 3 stepping motors are used. The algorithm of 3D position calculation and the result of experiments are explained.

  • PDF

The Development of Monitoring System in the Scrubber of Semiconductor Manufacture Processing (반도체 공정의 SCRUBBER 감시 시스템 개발)

  • Kim, Joohn-Hwan;Kim, Sang-Woo;Kim, Beung-Jin;Moon, Hak-Yong;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2390-2392
    • /
    • 1998
  • In this paper, we discuss the development of monitoring system with data process equipment which transfers data from Remote Terminal Unit(RTU) to monitoring computer. The RTUs sense temperature, pressure and PLC(Programmable Logic Controller) nodes conditions of scrubber in semiconductor manufacture processing. The data Process equipment is connected every RTU and a monitoring computer through serial communication. This equipment receives informations from RTU, process data, and transfers them to monitoring computer. To avoid congestion in data communication, task scheduling algorithm used RT O/S(Real-Time Operating System) is embedded in ROM which is a part of data Process equipment.

  • PDF

Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report) (신경망 회로를 이용한 연삭가공의 트러블 검지(II))

  • Kwak, J.S.;Kim, G.H.;Ha, M.K.;Song, J.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF