기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.
With the increasing wildfire damage driven by climate change, it is crucial to assess the effectiveness of restoration efforts on a large scale. The majority of forests in Korea are situated in rugged mountainous regions, making it challenging to monitor large-scale wildfires. Consequently, establishing methodologies that use satellite imagery to evaluate restoration effectiveness is essential. This study aims to assess the recovery trends of ecosystems in wildfire-affected areas using NDVI mean-variance plots, which monitor changes in NDVI mean and variance over time through satellite imagery and visually represent the restoration process. The analysis of NDVI mean-variance plots for different restoration methods revealed that landscape restoration had the slowest recovery. This slower recovery is likely due to reduced growth from the complete removal of damaged trees. In contrast to High Severity (HS) areas, Moderate High Severity (MHS) areas showed that commercial afforestation, revegetation, ecological forest treatment led to a more stable recovery state post-disturbance, suggesting that areas with lower wildfire severity may recover more quickly. Furthermore, the recovery trends between artificial and natural restoration showed no significant difference, indicating that natural restoration can have similar restoration effects to artificial restoration in appropriate areas. Therefore, the study emphasizes the need to expand natural restoration areas, considering ecological and economic benefits such as increased biodiversity and genetic resource conservation. This research provides critical baseline data for the formulation and implementation of restoration policies in large-scale wildfire-affected regions and is expected to contribute significantly to the development of effective management strategies and monitoring techniques.
최근 빅데이터 과학은 사회현상 모델링을 통한 예측은 물론 강화학습과 결합하여 산업분야 자동제어까지 응용범위가 확대되고 있다. 이러한 추세 가운데 이미지 영상 데이터 활용연구는 화학, 제조, 농업, 바이오산업 등 다양한 산업분야에서 활발히 진행되고 있다. 본 논문은 신경망 기술을 활용하여 영상 데이터의 시맨틱 분할 성능을 개선하고자, U-Net의 계산효율성을 개선한 DeepU-Net 신경망에 AutoML 강화학습 알고리즘을 구현한 NASNet을 결합하였다. BRATS2015 MRI 데이터을 활용해 성능 검증을 수행하였다. 학습을 수행한 결과 DeepU-Net은 U-Net 신경망 구조보다 계산속도 향상 뿐 아니라 예측 정확도도 동등 이상의 성능이 있음을 확인하였다. 또한 이미지 시맨틱 분할 성능을 개선하기 위해서는 일반적으로 적용하는 드롭아웃 층을 빼고, DeepU-Net에 강화학습을 통해 구한 커널과 필터 수를 신경망의 하이퍼 파라미터로 선정했을 때 DeepU-Net보다 학습정확도는 0.5%, 검증정확도는 0.3% 시맨틱 분할 성능을 개선할 수 있었다. 향후 본 논문에서 시도한 자동화된 신경망을 활용해 MRI 뇌 영상진단은 물론, 열화상 카메라를 통한 이상진단, 비파괴 검사 진단, 화학물질 누출감시, CCTV를 통한 산불감시 등 다양한 분야에 응용될 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.