• 제목/요약/키워드: Monitor chamber

검색결과 79건 처리시간 0.026초

Radon Exhalation from Five Wood Species

  • Lee, Ju Yong;Choi, Gyu Woong;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권6호
    • /
    • pp.735-747
    • /
    • 2018
  • Radon radiation exposures in home have been posed as a potential cancer hazard. This research aims to present the basic data of the indoor radon concentration level by examining the radon exhalation rates of wood species. Radon exhalation rates from five commonly used wood species in Korean wood building construction were measured with Continuous Radon Monitor (CRM), Model 1028 (Sun Nuclear Co., USA) using the Closed Chamber Method (CCM). The mass exhalation rate was observed to vary from $0.00089Bq{\cdot}kg^{-1}{\cdot}h^{-1}$ to $0.00181Bq{\cdot}kg^{-1}{\cdot}h^{-1}$, whereas the surface exhalation rate was observed to be $0.00677-0.01517Bq{\cdot}m^{-2}{\cdot}h^{-1}$. The radon exhalation rate of Quercus accutissima Carruth (white oak) which has the highest density showed the highest figure among the five wood species, on the other hand, the rest of four species showed similar results which were similar to the radon exhalation rates of wood in the U.S.A. and Canada. The average of the concentration measured by the CCM represented well up to the second half-life period (7.7 days). Because result of these small quantities seems to indicate that radon exhalation from the tested wood species has almost negligible impact, the main culprit of the high indoor radon concentration is clearly derived from the background of surrounding wood house. Therefore, as a safety precaution, infrastructures made of wood materials should be designed with the consideration of influx of radon and built accordingly. Furthermore, it is highly desirable that wood will be needed to use for furniture and interior finishing material in indoor environment.

Tricalcium phosphate와 Vitapex가 치근단 조직에 미치는 영향에 관한 실험적 연구 (THE EFFECT OF THE TRICALCIUM PHOSPHATE AND VITAPEX ON THE DOGS' PERIAPICAL TISSUES)

  • 최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제14권1호
    • /
    • pp.71-84
    • /
    • 1989
  • The purpose of this study was to evaluate the effect of tricalcium phosphate and Vitapex on the dogs' periapical tissues. Twenty mandibular premolars from 5 healthy dogs were used for this study. After the animals were anesthetized intramuscularly, pulp chambers were open and pulp tissue was extirpated with a barbed broach and H-file. Then the working length of the root canal was measured with H-file and pulp tissue was completely removed. Before the actual canal filling, the root canals of twenty teeth have been experimentally infected with opening the pulp chamber for 5 weeks. Periapical radiographs of the experimental teeth were taken to monitor the periapical pathological condition. Each root apex of 20 premolars was perforated with engine reamer and the root canals were enlarged with No. 30-60 H-files. They were divided into treated as follows. Control group: The root canal was filled with gutta-percha. Experimental group 1: The canal was dried with sterile paper points and mixture of tricalcium phosphate and physiological saline was overfilled beyond the root apex with a lentulo spiral. Then the root canal was filled gutta-percha and lateral condensation and the pulp chamber was filled with Caviton. Experimental group 2: The root canals were overfilled with Vitapex and were treated in the same manner as those in experimental group 1 At 1,2,3, and 8 weeks after experiment, the periapical tissues including the alveolar bone were fixed with 10% formalin solution for I week and decalcified with Plank-Rycho solution for 5 weeks. The specimens were embedded in paraffin and serial sections were cut into a thickness of 6 ${\mu}m$ at the plane of the root apex. Hematoxyline-eosin and Masson's trichrome stain were made for the histo-pathological examinations. The results were as follows: 1. Ingrowth of collagen fiber was observed from 1 week in control group and experimental groups. 2. The rate of bone formation of experimental group 1 was accelerated more than that of experimental group 2. 3. Resorption of cementum was seen in control group, but apposition of cementum was seen in experimental groups.

  • PDF

Prediction of Indoor Radon Concentration through the Exhalation from Korean Yellow Residual Soil, Hwangtoh as a Building Material

  • LEE, Ju Yong;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권2호
    • /
    • pp.122-133
    • /
    • 2021
  • The radon gas from nature mainly considers a cause of radon problems, and it is closely affect human life cycle. Korean yellow residual soil, Hwangtoh, widely used as a building material, is considered to be one of major sources of indoor radon. However, there have, as yet, been no studies about radon from Hwangtoh in mass market brands. Here, we investigated the indoor radon concentrations and exhalation rates in four Hwangtohs from different brand names and regional features. The Closed Chamber Method (CCM) conducted by a Continuous Radon Monitor (CRM) has been used for the rates of radon exhalation. Based on equations of previous references, the indoor radon concentrations were deducted. As a result, the radon surface exhalation rates resulted in the 1.4208 to 3.0293 Bq·㎡·h-1 range. Significant differences were found among Hwangtohs according to production regions. Materials with higher radon concentration required a longer time to reach a quasi-steady state in a given environment, in other words, the number of half-life cycles increased from a set starting point. The experimentally identified Hwangtohs demonstrated its safety for construction purposes. There exists, so far, a possibility to exert influence radon emanation due to unidentified factors. Therefore, it is necessary to corroborate with more research by increasing the number of Hwangtohs, considering the other references reported high radon exhalation rates. In addition, it is highly recommended that the radon exhalation rates should be measured for all building materials for preventing human health before the material usage.

Internet of Things-Based Command Center to Improve Emergency Response in Underground Mines

  • Jha, Ankit;Verburg, Alex;Tukkaraja, Purushotham
    • Safety and Health at Work
    • /
    • 제13권1호
    • /
    • pp.40-50
    • /
    • 2022
  • Background: Underground mines have several hazards that could lead to serious consequences if they come into effect. Acquiring, evaluating, and using the real-time data from the atmospheric monitoring system and miner's positional information is crucial in deciding the best course of action. Methods: A graphical user interface-based software is developed that uses an AutoCAD-based mine map, real-time atmospheric monitoring system, and miners' positional information to guide on the shortest route to mine exit and other locations within the mine, including the refuge chamber. Several algorithms are implemented to enhance the visualization of the program and guide the miners through the shortest routes. The information relayed by the sensors and communicated by other personnel are collected, evaluated, and used by the program in proposing the best course of action. Results: The program was evaluated using two case studies involving rescue relating to elevated carbon monoxide levels and increased temperature simulating fire scenarios. The program proposed the shortest path from the miner's current location to the exit of the mine, nearest refuge chamber, and the phone location. The real-time sensor information relayed by all the sensors was collected in a comma-separated value file. Conclusion: This program presents an important tool that aggregates information relayed by sensors to propose the best rescue strategy. The visualization capability of the program allows the operator to observe all the information on a screen and monitor the rescue in real time. This program permits the incorporation of additional sensors and algorithms to further customize the tool.

산업현장에 활용되는 PID 직독식장비의 특성 고찰 (Review Paper for Characterization of Photoionization Detector-Direct Reading Monitors )

  • 김성호;박해동;황은송
    • 한국산업보건학회지
    • /
    • 제33권2호
    • /
    • pp.93-102
    • /
    • 2023
  • Objectives: With the evolution of direct reading sensors, it is possible to monitor several substances through telecommunication. However, there are some limitations on the use of direct reading technologies in the Occupational Safety and Health Act in South Korea, which only applies to detector tubes, noise, heat, and carbon monoxides. The number of chemicals and their amount of use have been continuously increasing in South Korea. The Ministry of Employment and Labor (MoEL) has concerns about worker's health because exposure is only covered for about 1.2% of all distributed chemicals. Using a direct reading monitor with photoionization detectors (PID-DRMs), gases and vapors chemicals can be measured. Based on the data, business owners are able to create corrective strategies, provide better working routines, and select correct respiratory equipment. PID-DRMs are less expensive and easier to handle for an owner voluntarily controlling chemicals emitted in the workplace. However, there are several limitations on using these PID-DRMs to the degree that the MoEL has not been able to select a legal monitor. The aim of this study was to review previous studies related to PID-DRMs and identify the characterization and limitation on PID-DRMs. Methods: To search for related studies on PID-DRMs, key words were used including direct reading monitors/instruments and/or photoionization detectors. Through that, four domestic and 15 international studies were reviewed. Results: Studies on PID-DRMs were conducted by chamber (enclosed, dynamic, walk-in) and in the field (experimental environment, actual environment). The concentration of PID-DRMs and charcoal tubes were compared for a single substance or mixture, or within the PID-DRMs. There was a high correlation between the two concentrations, but it did not meet the accuracy criteria (95% confidence interval, within 25%) of the NIOSH technical report (2012). In addition, differences in measured values occurred according to environmental factors (temperature, humidity) and high concentration, and concentration values tended to be underestimated due to contamination of the sensor. As a way to improve the accuracy of PID concentration, it was proposed to use correction factors, charcoal tube-based correction factors, or to calibrate the PID-DRMs in the same environment as the workplace. Conclusions: PID-DRMs can likely be used by business owners for the purpose of voluntarily managing the workplace environment, and it is expected that it will be possible to use them as legal equipment if a PID sensor can be upgraded and the limitations of the sensor (temperature, humidity, high concentration evaluation, sensor pollution) can be overcome in the near future.

연마재 워터젯을 위한 노즐상태 모니터링 시스템 설계 (Nozzle Condition Monitoring System for Abrasive Waterjet Process)

  • 김정욱;김노원;김철민;김성렬;김현희;이경창
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.817-823
    • /
    • 2020
  • In recent, the machining of difficult-to-cut materials such as titanium alloys, stainless steel, Inconel, ceramic, glass, and carbon fiber reinforced plastics (CFRP) used in aerospace, automobile, medical industry is actively researched. Abrasive waterjet is a non-traditional processing method in which ultra-high pressure water and abrasive particles are mixed in a mixing chamber and shoot out jet through a nozzle, and removed by erosion due to collision with a material. In particular, the nozzle of the abrasive waterjet is one of the most important parts that affect the machining quality as with a cutting tool in general machining. It is very important to monitor the condition of the nozzle because the workpiece is uncut or the surface quality deteriorates due to wear, expanding of the bore, damage of the nozzle and clogging of the abrasive, etc. Therefore, in this paper, we propose a monitoring system based on Acoustic Emission(AE) sensor that can detect nozzle condition in real time during AWJ processing.

OES를 이용한 질화막/산화막의 식각 스펙트럼 데이터 분석 (Nitride/Oxide Etch Spectrum Data Verification by Using Optical Emission Spectroscopy)

  • 박수경;강동현;한승수;홍상진
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.353-360
    • /
    • 2012
  • As semiconductor device technology continuously shrinks, low-open area etch process prevails in front-end etch process, such as contact etch as well as one cylindrical storage (OCS) etch. To eliminate over loaded wafer processing test, it is commonly performed to emply diced small coupons at stage of initiative process development. In nominal etch condition, etch responses of whole wafer test and coupon test may be regarded to provide similar results; however, optical emission spectroscopy (OES) which is frequently utilize to monitor etch chemistry inside the chamber cannot be regarded as the same, especially etch mask is not the same material with wafer chuck. In this experiment, we compared OES data acquired from two cases of etch experiments; one with coupon etch tests mounted on photoresist coated wafer and the other with coupons only on the chuck. We observed different behaviors of OES data from the two sets of experiment, and the analytical results showed that careful investigation should be taken place in OES study, especially in coupon size etch.

Multi-Channel Vision System for On-Line Quantification of Appearance Quality Factors of Apple

  • Lee, Soo Hee;Noh, Sang Ha
    • Agricultural and Biosystems Engineering
    • /
    • 제1권2호
    • /
    • pp.106-110
    • /
    • 2000
  • An integrated on-line inspection system was constructed with seven cameras, half mirrors to split images. 720 nm and 970 nm band pass filters, illumination chamber having several tungsten-halogen lamps, one main computer, one color frame grabber, two 4-channel multiplexors, and flat plate conveyer, etc. A total of seven images, that is, one color image form the top of an apple and two B/W images from each side (top, right and left) could be captured and displayed on a computer monitor through the multiplexor. One of the two B/W images captured from each side is 720nm filtered image and the other is 970 nm. With this system an on-line grading software was developed to evaluate appearance quality. On-line test results with Fuji apples that were manually fed on the conveyer showed that grading accuracies of the color, defect and shape were 95.3%, 86% and 88.6%, respectively. Grading time was 0.35 second per apple on an average. Therefore, this on-line grading system could be used for inspection of the final products produced from an apple sorting system.

  • PDF

방사광 가속기 PLS-II 저장링 거더 시스템 개발 (The Development of PLS-II Storage-ring Girder Systems at PAL)

  • 김승남;이채순;이홍기;김광우;남상훈
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.690-697
    • /
    • 2013
  • The magnets and vacuum chambers, which are the main facilities of the Pohang light source are installed on the storage-ring girders. System safety and reliability should be taken into account for the precise operating of the main facilities, so vibration analysis is essential to do this. Static and seismic analyses were performed for the design of structure considering safety, and also frequency and response spectrum analyses were performed for the precise alignment. With these results, the effects of surrounding vibration were checked. This paper explains about the design and vibration analysis of girder systems.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • 장해규;김대경;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF