• Title/Summary/Keyword: Monin-Obukhov length scale

Search Result 2, Processing Time 0.015 seconds

Estimation on The Atmospheric Stability and Flow Characteristics of Planetary Boundary Layer in Wolryong Coastal Region (월령 연안지역 대기경계층의 유동특성과 대기 안정성에 대한 고찰)

  • Jeong, Tae-Yoon;Lim, Hee-Chang;Kim, Hyun-Goo;Jang, Moon-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.857-865
    • /
    • 2009
  • The physical properties of an atmospheric boundary layer in Wolryong, a west coastal region of Jeju, South Korea, in terms of the atmospheric stability and roughness length, is important and relevant to both engineers and scientists. The study is aiming to understand the atmospheric stability around this region and its effect on the roughness length. We calculate the Monin-Obukhov length(L) against 3 typical regions of the atmospheric condition - unstable regime (-5$-0.2{\leq}H/L{\leq}0.2$) and stable regime (0.2

A study on the Assessment of the Predictability of the APSM (APSM의 예측능 평가에 관한 연구)

  • 박기하;윤순창
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.265-274
    • /
    • 2003
  • The Pasquill-Gifford stability category is a very important scheme of the Gaussian type dispersion model defined the complex turbulence state of the atmosphere by A grade(very unstable) to F grade(very stable). But there has been made a point out that this stability category might decrease the predictability of the model because it was each covers a broad range of stability conditions, and that they were very site specific. The APSM (Air Pollution Simulation Model) was composed of the turbulent parameters, i.e. friction velocity(${\mu}$$\_$*/), convective velocity scale($\omega$$\_$*/) and Monin-Obukhov length scale(L) for the purpose of the performance increasing on the case of the unstable atmospheric conditions. And the PDF (Probability Density Function)model was used to express the vertical dispersion characteristics and the profile method was used to calculate the turbulent characteristics. And the performance assessment was validated between APSM and EPA regulatory models(TEM, ISCST), tracer experiment results. There were very good performance results simulated by APSM than that of TEM, ISCST in the short distance (<1415 m) from the source, but increase the simulation error(%) to stand off the source in others. And there were differences in comparison with the lateral dispersion coefficient($\sigma$$\_$y/) which was represent the horizontal dispersion characteristics of a air pollutant in the atmosphere. So the different calculation method of $\sigma$$\_$y/ which was extrapolated from a different tracer experiment data might decrease the simulation performance capability. In conclusion, the air pollution simulation model showed a good capability of predict the air pollution which was composed of the turbulent parameters compared with the results of TEM and ISCST for the unstable atmospheric conditions.