• Title/Summary/Keyword: Momentum Ratio

Search Result 309, Processing Time 0.028 seconds

Development of a Nursing Diagnosis System Using a Neural Network Model (인공지능을 도입한 간호정보시스템개발)

  • 이은옥;송미순;김명기;박현애
    • Journal of Korean Academy of Nursing
    • /
    • v.26 no.2
    • /
    • pp.281-289
    • /
    • 1996
  • Neural networks have recently attracted considerable attention in the field of classification and other areas. The purpose of this study was to demonstrate an experiment using back-propagation neural network model applied to nursing diagnosis. The network's structure has three layers ; one input layer for representing signs and symptoms and one output layer for nursing diagnosis as well as one hidden layer. The first prototype of a nursing diagnosis system for patients with stomach cancer was developed with 254 nodes for the input layer and 20 nodes for the output layer of 20 nursing diagnoses, by utilizing learning data set collected from 118 patients with stomach cancer. It showed a hitting ratio of .93 when the model was developed with 20,000 times of learning, 6 nodes of hidden layer, 0.5 of momentum and 0.5 of learning coefficient. The system was primarily designed to be an aid in the clinical reasoning process. It was intended to simplify the use of nursing diagnoses for clinical practitioners. In order to validate the developed model, a set of test data from 20 patients with stomach cancer was applied to the diagnosis system. The data for 17 patients were concurrent with the result produced from the nursing diagnosis system which shows the hitting ratio of 85%. Future research is needed to develop a system with more nursing diagnoses and an evaluation process, and to expand the system to be applicable to other groups of patients.

  • PDF

Development of four-equation turbulence model for prediction of mixed convective heat transfer on a flat plate (수평평판위 의 혼합대류 열전말 계산 을 위한 4-방정식 모델 의 개발)

  • 성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.193-203
    • /
    • 1983
  • The mixed convective heat transfer problems are characterized by the relatively significant contribution of buoyancy force to the transport processes of momentum and heat. Past analytical studies on this kind of problems have been carried out by employing either the conventional R-.epsilon. turbulence model which includes constant turbulent Prandtl number .sigma.$_{+}$ 1 or an extended R-.epsilon. turbulence model which takes account of the buoyancy effect in appropriate length scale equations. But in the latter case, the temperature variance .the+a.$^{2}$ over bar is approximated by a model under local equilibrium condition and the time scale ratio between velocity and temperature is assumed to be constant. These approximation is known to break down when the buoyancy effect is dominant. The present study is aimed at development of new computational turbulence closure level which can be applied to this rather complex turbulent process. The temperature variance is obtained directly by solving its dynamic transport equation and the time scale ratio which is variable in space is computed by a solution of a dynamic equation for the rate of scalar dissipation .epsilon.$_{\thetod}$ It was found that the computational results are in good agreement with available experimental data of wide range of unstable conditions.

A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes (냉각홀 형상 변화에 따른 원형봉 선단의 막냉각 특성 연구)

  • Kim, S.M.;Kim, Youn J.;Cho, H.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.21-27
    • /
    • 2003
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of a turbine blade, cylindrical body model is used. Mainstream Reynolds number based on the cylinder diameter is $7.1{\times}10^4$. The effects of coolant flow rates are studied for blowing ratios of 0.7, 1.0, 1.3 and 1.7, respectively. The temperature distribution of the cylindrical model surface is visualized with infrared thermography (IRT). Results show that the film cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.

An experimental study on the swirl flow characteristics of a helical intake port (나선형 흡기포트의 선회유동 특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Yu, Gyeong-Won;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.793-803
    • /
    • 1997
  • This experimental study was mainly investigated on the swirl flow characteristics in the cylinder generated by a helical intake port. LDA system was used for the measurement of in-cylinder velocity fields. Tangential and axial velocity profiles, with varying valve lifts, valve eccentricity ratios and axial distance, were measured. When the intake valve was set in the cylinder center, we could find that in-cylinder swirl flow fields were composed of a forced vortex motion and a free vortex motion in the vicinity of the cylinder center and the cylinder wall respectively. In case of valve eccentricity ratio, N$_{y}$ = 0.45, the vortex flow which rotates to the opposite direction of a main rotating flow in the cylinder was found. And the reverse flow toward the cylinder head surface was also found in axial velocity profile and it showed the tendency of the linear decrease in the region of 0.leq.Y/B.leq.1.2.2.

Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine

  • Ilhan, Akin;Bilgili, Mehmet;Sahin, Besir
    • Wind and Structures
    • /
    • v.27 no.3
    • /
    • pp.187-197
    • /
    • 2018
  • In this study, aerodynamic characteristics of a horizontal axis wind turbine (HAWT) were evaluated and discussed in terms of measured data in existing onshore wind farm. Five wind turbines (T1, T2, T3, T4 and T5) were selected, and hub-height wind speed, $U_D$, wind turbine power output, P and turbine rotational speed, ${\Omega}$ data measured from these turbines were used for evaluation. In order to obtain characteristics of axial flow induction factor, a, power coefficient, $C_p$, thrust force coefficient, $C_T$, thrust force, T and tangential flow induction factor, a', Blade Element Momentum (BEM) theory was used. According to the results obtained, during a year, probability density of turbines at a rotational speed of 16.1 rpm was determined as approximately 45%. Optimum tip speed ratio was calculated to be 7.12 for most efficient wind turbine. Maximum $C_p$ was found to be 30% corresponding to this tip speed ratio.

Experimental Study on the Flyer Velocity in Explosive Welding (폭발용접에서 부재의 충돌속도에 관한 실험적 연구)

  • 문정기;김청균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1423-1430
    • /
    • 1993
  • One of the most important parameters for explosive welding is flyer velocity $V_p$, which principally depends on momentum caused by detonation of explosive. And close dependency with other parameters such as detonation velocity $V_D$, dynamic angle $\beta$, charge ratio R, flyer thickness $t_f$ and stand-off distance d, should be taken accounts for welding design. This paper describes, as a result of experiment, an empirical equation related to relation between $V_p$/$V_D$ and R. The flyer velocity which is estimated by $V_{p}=0.284{\times}R^{0.593}$or $V_{p}=\sqrt[0.2]{2E_G}{\times}R^{0.593}$ can be used in ordinary experiments. And the calculated values of the flyer velocity exhibit better accuracy than those of other investigators.

Characteristics of Turbulent Nonpremixed Jet Flame in Cross Air Flow (주유동에 수직으로 분사되는 난류 비예혼합 분류 화염의 특성)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2002
  • An experimental study on the characteristics of stability of propane turbulent nonpremixed jet flames discharged normal to air free-streams with uniform velocity profile is conducted. Experimental observations are focused on the flame shape, the stability considering two kinds of flame, lift-off distance, and the flame length according to velocity ratio. In order to investigate the mixing structure of the flame base at the lower limit, we employ the RMS technique and measure the species concentration by a gas chromatography. In the results of the stability curve and lifted flame, it is fecund that the dependency of nozzle diameter is closely related to the large-scale vortical structure representing counter-rotating vortices pair. Also, the detailed discussion on the phenomenon of blowout due to this large vortical motion, is provided.

Heat transfer in the perturbed boundary layer by cylinder and secondary injection in supersonic flow (초음속유동장 내에 돌출된 실린더와 2차분사 홀 주변에서의 열전달 현상 연구)

  • Yi, Jong-Ju;Yu, Man-Sun;Song, Ji-Woon;Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.276-280
    • /
    • 2007
  • In this paper, heat transfer changes due to the shock/boundary layer interaction were investigated on surfaces where protruding bodies such as a cylinder and a secondary jet are mounted. With an infra-red thermography, surface temperature was measured and the measured data was used to obtain the convective heat transfer. Heat transfer phenomena around these two solid and fluid bodies were appeared to be very comparable each other. The inclination of a cylinder and the jet injection ratio were the important factors for the change of heat transfer on the effective surfaces.

  • PDF

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

An Analytical Study on the Gas-Solid Two Phase Flows

  • Sun, Jianguo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF