• Title/Summary/Keyword: Momentum Loss

Search Result 126, Processing Time 0.026 seconds

Basic Configuration Design and Performance Analysis of a 100kW Wind Turbine Blade using Blade Element Momentum Theory (BEMT에 의한 100kW 풍력터빈 블레이드 기본설계 및 출력 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.827-833
    • /
    • 2008
  • In this study, mathematical expressions based upon the conventional BEMT(blade element momentum theory) was applied to basic 100kW wind turbine blade configuration design. Power coefficient and related flow parameters, such as Prandtl's tip loss coefficient, tangential and axial flow induction factors of the wind turbine were analyzed systematically. X-FOIL was used to acquire lift and drag coefficients of the 2-D airfoils and Viterna-Corrigan formula was used o interpolate he aerodynamic characteristics in post-stall region. Also, aerodynamic characteristics, measured in a wind tunnel to calculate he power coefficient was applied. The comparative results such as axial and tangential flow factors, power coefficients were presented in this study. Power coefficient, calculated by in-house code was compared with the GH-Bladed result. The difference of the aerodynamic characteristics caused the difference of the performance characteristics as variation as TSR.

Development of Transient Simulation Code for Pressurized Water Reactors (가압경수형 원자력발전소의 과도현상 모의코드 개발)

  • Auh, Geun-Sun;Ko, Chang-Seog;Lee, Sung-Jae;Hwang, Dae-Hyun;Kim, Dong-Su;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.198-204
    • /
    • 1987
  • A plant simulation code, MCSIM (Micro-Computer SIMulator), has been developed to simulate plant transient accidents for pressurized water reactors. Reactor coolant system is modeled using decoupled energy and momentum equations, drift flux two-phase flow model and integral momentum equation. A two-fluid pressurizer model is used to simulate the pressurizer dynamics. Pot Boiler model is used for steam generator, steady-state decoupled energy and momentum equations for secondary side system, and point kinetics equations for nuclear power calculation. For test of the present version of MCSIM, complete loss of flow and RCCA withdrawal accidents are calculated with MCSIM. The results are compared with those in FSAR of KNU 5 & 6.

  • PDF

MASS-LOSS RATES OF OH/IR STARS

  • Suh, Kyung-Won;Kwon, Young-Joo
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.235-242
    • /
    • 2013
  • We compare mass-loss rates of OH/IR stars obtained from radio observations with those derived from the dust radiative transfer models and IR observations. We collect radio observational data of OH maser and CO line emission sources for a sample of 1533 OH/IR stars listed in Suh & Kwon (2011). For 1259 OH maser, 76 CO(J=1-0), and 55 CO(J=2-1) emission sources, we compile data of the expansion velocity and mass-loss rate. We use a dust radiative transfer model for the dust shell to calculate the mass-loss rate as well as the IR color indices. The observed mass-loss rates are in the range predicted by the theoretical dust shell models corresponding to $\dot{M}=10^{-8}M_{\odot}/yr-10^{-4}M_{\odot}/yr$. We find that the dust model using a simple mixture of amorphous silicate and amorphous $Al_2O_3$ (20% by mass) grains can explain the observations fairly well. The results indicate that the dust radiative transfer models for IR observations generally agree with the radio observations. For high mass-loss rate OH/IR stars, the mass-loss rates obtained from radio observations are underestimated compared to the mass-loss rates derived from the dust shell models. This could be because photon momentum transfer to the gas shell is not possible for the physical condition of high mass-loss rates. Alternative explanations could be the effects of different dust-to-gas ratios and/or a superwind.

Off-design Performance Prediction of Centrifugal Pumps by Using TEIS model and Two-zone model (TEIS 모델과 두 영역 모델을 이용한 원심 펌프의 탈 설계 성능 예측)

  • Yoon, In-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.574-579
    • /
    • 2000
  • In this study. an off-design performance prediction program for centrifugal pumps is developed. To estimate the losses in an impeller flow passage, two-zone model and two-element in series(TEIS) model are used. At impeller exit. the mixing process occurs with an increase in entropy. In two-zone model. there are both primary zone and secondary zone for an isentropic core flow and an average of all non-isentropic streamtubes respectively. The level of the core flow diffusion in an impeller was calculated by using TEIS model. While internal losses in an impeller an automatically estimated by using the above models, some empirical correlations far estimating external losses. far example, disk friction loss, recirculation loss and leakage loss are used. In order to analyze the vaneless diffuser flow. the momentum equations for the radial and tangential directions are used and solved together with continuity and energy equations.

  • PDF

Numerical analysis of condensation in the condenser using the porous medium approach (다공성 매질 개념을 이용한 응축기의 응축 열전달에 관한 수치 해석)

  • Je, Jun-Ho;Choi, Chi-Woong;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2261-2266
    • /
    • 2007
  • In this study, the numerical analysis to estimate condensation heat and mass transfer of the condenser was carried out using the PMA (porous medium approach). In the PMA, the details of tube bundle in the condenser are replaced by the porous medium, and the flow resistance term is added in the momentum equation. In this regard, the PMA is quite helpful for the study of tube bundle in the large condenser. The pressure loss through tube bundle can be compensated by viscous and inertial momentum sink terms, which was validated numerically. Value of the pressure drop was compared to that of Butterworth correlation. Three dimensional analysis of condensation for McAllister condenser with the PMA was conducted using Fluent 6.2 and UDFs (use-defined functions). The result of condensation rate was analogous to previous results (experimental and numerical data).

  • PDF

한국증권시장에서의 투자주체에 따른 Momentum, Reversal 효과

  • Lee, Tae-Gyu;Han, Seong-Gwon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.520-524
    • /
    • 2008
  • This research verifies the phenomenon of which the Momentum and Reversal effect of stock price would depend on the subject of investment in the point of view of the Behavior Finance hypothesis. For the experiment, this paper uses the KOSPI200 daily data and Net Investment Flow from Jan. 1999 to Dec. 2006. And we analyze the marginal profit and loss with foreigners, individual investors, and institutions. We verify the response of the subjects of investment based on the CAR for 3 days after more than 3 percent rising or drop. We also verify the response with respect to the ascending and descending trend based on the profit trend and subjects' behaviors a week before the drop.

  • PDF

Enthalpy transport in pulse tube refrigerators (맥동관냉동기의 앤탈피이동)

  • 강영구;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.180-192
    • /
    • 1998
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube is constant. Time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass streaming and enthalpy streaming. Effects of axial temperature gradient, velocity amplitude ratio and heat transfer between the gas and the wall on the steady mass streaming and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

Net Enthalpy Transport in Pulse Tube Refrigerators

  • Kang, Young-Goo;Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.33-44
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube was constant. The time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass and enthalpy streaming. Effects of the axial temperature gradient, velocity amplitude ratio, and heat transfer between the gas and the tube wall On the steady mass and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine (500kW급 수평축 조류발전기의 수력 최적 설계)

  • Ryu, Ki-Wahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

A Study on Flow Characteristics of Ejector for Cyclone Air Drying Machine (사이클론 건조기용 이젝터 유동 특성에 관한 연구)

  • Kim, Bong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.189-194
    • /
    • 2012
  • The purpose of this study is to predict the performance of a cyclone drying machine and air ejector used in drying applications. This paper deals with optimization of the geometry of the ejector for sludge drying using computational fluid dynamics. To facilitate the design of a jet ejector for air drying machines, a numerical model of simultaneous mass and heat transfers between the liquid(sludge) and gas(air) phases in the jet ejector was developed. The steady-state model was based on unidimensional balance equations of mass, energy and momentum for the liquid and gas phases. It was shown that the optimum condition to minimize pressure and momentum loss of air in the ejector was d=220mm. It was found that sludge particles inside the cyclone was smoothly discharged by the conical wedge installed on the bottom of the cyclone.