• Title/Summary/Keyword: Moment-frame

Search Result 736, Processing Time 0.023 seconds

Correlation between Analytic and Experimental Results on Inelastic Behavior of Reinforced Concrete Frame

  • Lee, Han-Seon;Kim, Sang-Dae;Park, Cheol-Yong;Ko, Dong-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.173-181
    • /
    • 2006
  • The objectives of this study are to evaluate the reliability of an existing nonlinear analysis program for predicting the inelastic behavior of reinforced concrete frame with seismic details and to observe the redistribution of the internal forces, which can not be easily measured by an experiment. In order to carry out this task, the nonlinear analysis program of IDARC 2D(3) was run on a 2-bay, 2-story moment-resisting reinforced concrete plane frame with seismic details. (1) The effort to obtain the results of the analysis similar to those of experiment was made by determining the appropriate values of model parameters. The comparison of the analysis results with those of experiment and the observation of the distribution of internal forces obtained through nonlinear analysis points to the following conclusions. (1) The overall relationship between lateral load and lateral displacement given by the analysis is similar to that of experiment. However, the values of initial stiffness and the amount of energy dissipation in the initial displacement steps given by the analysis show larger values than those of experiment. (2) The analysis provided detailed information on the distribution and redistribution of internal forces and proved useful in elucidating the crack pattern, the sequence of the occurrence of plastic hinges, and the failure or yielding mechanism for the whole structure. (3) In spite of the similarity in overall behavior of analysis and experiment, there exists a significant discrepancy in some local behaviors. Furthermore, the hysteresis in the relationship between moment and curvature in some column ends have shown sudden deteriorations in strength, which can not be interpreted satisfactorily at the present time. Therefore, it is necessary to develop a better analytical model to fill this knowledge gap.

Lateral Stiffness of Steel Moment Frames Having Dogbone Seismic Connection (독본(dogbone) 내진접합부를 갖는 철골 모멘트골조의 횡강성 평가)

  • 이철호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.639-647
    • /
    • 2002
  • A simplified analytical procedure is presented to estimate the reduction of elastic lateral stiffness of steel moment frames arising from the radius-cut dogbone weakening. With the original radius-cut dogbone shape, it is almost impossible or too complicated to integrate analytically the mathematical expressions encountered when applying the conjugate beam method to compute the beam deflection component. In this study, the problem is circumvented by replacing the original radius-cut dogbone with an equivalent dogbone of constant width. The equivalence between the two is established by imposing an equal dogbone elongation criterion. This approach is justified by using a calibrated finite clement analysis. Then, the elastic lateral deflection components from the column, panel zone, and beam are derived for a typical beam-column subassembly. The derived results can be used to evaluate the reduction of the frame lateral stiffness. Case studies conducted within some practical ranges of frame configurations show that the reduction in frame lateral stiffness due to the presence of dogbone cut is on the order of 1 to 2 percent and is reasonably negligible in practical sense.

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types (천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가)

  • Kwak, Eui-Shin;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

Optimum distribution of steel frame assembly for seismic retrofit of framed structures

  • Michael Adane;Seungho Chun;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.337-345
    • /
    • 2024
  • This research proposed a particle swarm optimization (PSO) based seismic retrofit design of moment frame structures using a steel frame assembly. Two full scale specimens of the steel frame assembly with different corner details were attached to one-story RC frames for seismic retrofit, and the lateral load resisting capacities of the retrofitted frames subjected to cyclic loads were compared with those of a bare RC frame. The open source software framework Opensees was used to develop an analytical model for validating the experimental results. The developed analytical model and the optimization scheme were applied to a case study structure for economic seismic retrofit design, and its seismic performance was assessed before and after the retrofit. The results show that the developed steel frame assembly was effective in increasing seismic load resisting capability of the structure, and the PSO algorithm could be applied as convenient optimization tool for seismic retrofit design of structures.

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Torsional Mode (일래스토메릭 부싱의 회전방향 모두 비선형 점탄성 모델연구)

  • Lee, Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.194-200
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. For axial motion case, the relation between the force applied to the shaft and their relative displacement was considered. In this paper, the relation between the moment applied to the shaft and their relative deformation(angle of rotation) is considered for the torsional motion case. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the moment relaxation function of the bushing. Solutions also allow for comparison between the exact moment-deformation behavior and that predicted the proposed model. It is shown that the predictions of the proposed moment-deformation relation are in very good agreement with the exact results.

  • PDF

Cyclic testing of weak-axis steel moment connections

  • Lee, Kangmin;Li, Rui;Jung, Heetaek;Chen, Liuyi;Oh, Kyunghwan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.507-518
    • /
    • 2013
  • The seismic performance of six types of weak-axis steel moment connections was investigated through cyclic testing of six full-scale specimens. These weak-axis moment connections were the column-tree type, WUF-B type, FF-W type, WFP type, BFP-B type and DST type weak-axis connections. The testing results showed that each of these weak-axis connection types achieved excellent seismic performance, except the WFP and the WUF-B types. The WFP and WUF-B connections displayed poor seismic performance because a fracture appeared prematurely at the weld joint due to stress concentrations. The column-tree type connection showed the best seismic behavior such that the story drift ratio could reach 5%.

Redistribution of Negative Moments in Beams Subjected to Seismic Load (지진하중에 대한 보 부모멘트의 재분배)

  • Eom, Tae-Sung;Park, Hong-Gun;Kim, Jae-Yo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.145-146
    • /
    • 2010
  • A moment redistribution method was developed for earthquake design of reinforced concrete moment-resisting frames. For a frame designed with strong column-weak beam, the moment redistribution mechanism was investigated. Based on the result, the relationship between redistributed moment and plastic rotation in plastic hinges was established. By using the relationship, we developed a method for the evaluation of plastic rotations during the moment redistribution, addressing the effects of various design parameters including member stiffness, load condition, and plastic mechanism of structure.

  • PDF

Assessing the ductility of moment frames utilizing genetic algorithm and artificial neural networks

  • Mazloom, Moosa;Afkar, Hossein;Pourhaji, Pardis
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.445-461
    • /
    • 2018
  • The aim of this research is to evaluate the effects of the number of spans, height of spans, number of floors, height of floors, column to beam moment of inertia ratio, and plastic joints distance of beams from columns on the ductility of moment frames. For the facility in controlling the ductility of the frames, this paper offers a simple relation instead of complex equations of different codes. For this purpose, 500 analyzed and designed frames were randomly selected, and their ductility was calculated by the use of nonlinear static analysis. The results cleared that the column-to-beam moment of inertia ratio had the highest effect on ductility, and if this relation was more than 2.8, there would be no need for using the complex relations of codes for controlling the ductility of frames. Finally, the ductility of the most frames of this research could be estimated by using the combination of genetic algorithm and artificial neural networks properly.