• 제목/요약/키워드: Moment variation

검색결과 366건 처리시간 0.025초

휨모멘트 효과가 고려된 변환각 트러스 모델에 의한 철근콘크리트 보의 전단거동 예측 (Shear Behavior Prediction of Reinforced Concrete Beams by Transformation Angle Truss Model Considered Bending Moment Effect)

  • 김상우;이정윤
    • 콘크리트학회논문집
    • /
    • 제14권6호
    • /
    • pp.910-921
    • /
    • 2002
  • 철근콘크리트 보의 전단거동을 예측하기 위하여 휨모멘트가 고려된 변환각 트러스 모델(TATM)을 제안하였다. 제안된 TATM으로 구한 전단응력-전단변형률 관계는 본 연구에서 수행된 실험결과와 잘 일치하였다. 또한, TATM으로 구한 전단강도는 다양한 전단스팬비와 지점형태 및 단면형태를 가지는 총 170개 실험결과와 비교되었다. TATM에 의한 해석결과는 평균 0.96, 변동계수 11.9 %로서 기존의 트러스 모델에 의한 해석결과보다 실험결과를 더 잘 예측하였으며, 해석결과에 대한 실험결과의 비는 a/d와 η에 관계없이 거의 일정하였다.

다양한 진자운동을 재현가능한 경직의 동적 역치 모델 (Dynamic Threshold Model of Spasticity that Can Predict Various Pendulum Motions)

  • 김철승;공세진;권선덕;김종문;엄광문
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.152-158
    • /
    • 2006
  • The objective of this work is to develop the knee joint model for representing various pendulum motions and quantifying the spasticity. Knee joint model included the extension and flexion muscles. The joint moment consists of both the active moment from the stretch reflex and the passive moment from the viscoelastic joint properties. The stretch reflex was modeled as nonlinear feedback of muscle length and the muscle lengthening velocity, which is Physiologically-feasible. Moreover, we modeled the spastic reflex as having dynamic threshold to account far the various pendulum trajectories of spastic patients. We determined the model parameters of three patients who showed different pendulum trajectories through minimization of error between experimental and simulated trajectories. The simulated joint trajectories closely matched with the experimental ones, which show the proposed model can predict pendulum motions of patients with different spastic severities. The predicted muscle force from spastic reflex appeared more frequently in the severe spastic patient, which indicates the dynamic threshold relaxes slowly in this patient as is manifested by the variation coefficient of dynamic threshold. The proposed method provides prediction of muscle force and intuitive and objective evaluation of spasticity and it is expected to be useful in quantitative assessment of spasticity.

Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.71-83
    • /
    • 2020
  • Cantilever sheet pile walls are subjected to surcharge loading located on the backfill soil and at different distances from the top of the wall. The response of cantilever sheet pile walls to surcharge loadings at varying distances under seismic conditions is scarce in literature. In the present study, the influence of uniform surcharge load on cantilever sheet pile wall at varying distances from the top of the wall under seismic conditions are analyzed using finite difference based computer program. The results of the numerical analysis are presented in non-dimensional form like variation of bending moment and horizontal earth pressure along the depth of the sheet pile walls. The numerical analysis has been conducted at different magnitudes of horizontal seismic acceleration coefficient and vertical seismic acceleration coefficients by varying the magnitude and position of uniform surcharge from the top of the wall for different embedded depths and types of soil. The parametric study is conducted with different embedded depth of sheet pile walls, magnitude of surcharge on the top of the wall and at a distance from the top of the wall for different angles of internal friction. It is observed that the maximum bending moment increases and more mobilization of earth pressure takes place with increase in horizontal seismic acceleration coefficients, magnitude of uniform surcharge, embedded depth and decrease in the distance of surcharge from the top of the wall in loose sand.

L-모멘트 및 LH-모멘트에 의한 GEV 분포모형의 실계홍수량의 유도 (Derivation of Design Flood by L-Moments and LH-Moments in GEV distributiion)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.479-485
    • /
    • 1999
  • This study was conducted to derived design floods by Generalized Extreme Value(GEV) distributiion for the annual maximum series at ten watersheds along Han, Nagdong, Geum , Yeongsan and Seomjin river systems. Adequency for the analysis of flood data used in this study was established by the test of Independence, Homogeneity , detection of Outliers. Coefficient of variation , skewness and kurtosis were calculated by the L-Moment, and LH-Moment ratio respectively. Parameters were estimated by the Method of L-Method of LH-Moment. Design floods obtained by Method of L-Moments and LH-Moments using different methods for plotting positions in GEV distributions and were compared with those obatined using the Method of L-Moments and LH-Moments by the Relative Mean Errors and Realtive Absoulte Errors. It was found that desgin floods derived by the method of L-Moments and LH-Moments using Cunnane plotting position foumula in the GEV distribution are much closer to those of the observed data in comparison with those obtained by methods of L-moments and LH-moments using the other formula for poltting postions from the viewpoint of Relative Mean Errors and Relative Absoulte Errors. In view of the fact that hydraulic structures indcluding dams and levees are generally usiong design floods with the return period of two hundred years or so, design floods derived by LH-Moments are seemed to be more reasonable than those of L-Moments in the GEV distribution.

  • PDF

Two-Drum Winder 권취 공정 시스템에서의 적용 PID 제어기를 이용한 장력제어 (Tension Control Using Adaptive PID Controller in the Two-Drum Winder Web Transport System)

  • 최승규;이동빈;임화영
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.813-821
    • /
    • 2000
  • In this paper, we developed modeling of tension and speed dynamics for a two-drum winder in a three span continuous web transport system which had not been previously. Dynamic modeling of the time-varying nonlinear system was derived by considering the effect of the radii and mass moment of inertia in the unwinder and the two-drum winder through winding up the web. After linearizing it, we designed with a variable-gain a PID controller for tension control and a PI controller for speed. Simulation is carried out with the variation of radii and moment of inertia at high speed for the proposed tension control system with the two-drum winder and the variavle-gain a PID controller. Results show good performance of tension control during the speed change speed at a start-up and stop.

  • PDF

Brazier effect of single- and double-walled elastic tubes under pure bending

  • Sato, Motohiro;Ishiwata, Yuta
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.17-26
    • /
    • 2015
  • The cross sections of hollow cylindrical tubes ovalise under a pure bending condition, and this reduces their flexural stiffness as their curvatures increase. It is important to accurately evaluate this phenomenon, known as the 'Brazier effect', to understand the bending behaviour of the systems considered. However, if the tubes are supported by an elastic medium or foundation, the ovalisation displacements of their cross sections may decrease. From this point of view, the purpose of this research is to analytically investigate the bending characteristics of single- and double-walled elastic tubes contacted by an elastic material by considering the Brazier effect. The Brazier moment, which is the maximum moment-carrying capacity of the ovalised cross section, can be calculated by introducing the strain energy per unit length of the tube in terms of the degree of ovalisation for the tube and the curvature. The total strain energy of the double-walled system is the sum of the strain energies of the outer and inner tubes and that of the compliant core. Results are comparatively presented to show the variation in the degree of ovalisation and the Brazier moment for single- and double-walled tubes.

함수 근사 모멘트 방법에서 추정한 1∼4차 통계적 모멘트의 수치적 검증 (Numerical Verification of the First Four Statistical Moments Estimated by a Function Approximation Moment Method)

  • 곽병만;허재성
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.490-495
    • /
    • 2007
  • This research aims to examine accuracy and efficiency of the first four moments corresponding to mean, standard deviation, skewness, and kurtosis, which are estimated by a function approximation moment method (FAMM). In FAMM, the moments are estimated from an approximating quadratic function of a system response function. The function approximation is performed on a specially selected experimental region for accuracy, and the number of function evaluations is taken equal to that of the unknown coefficients for efficiency. For this purpose, three error-minimizing conditions are utilized and corresponding canonical experimental regions constructed accordingly. An interpolation function is then obtained using a D-optimal design and then the first four moments of it are obtained as the estimates for the system response function. In order to verify accuracy and efficiency of FAMM, several non-linear examples are considered including a polynomial of order 4, an exponential function, and a rational function. The moments calculated from various coefficients of variation show very good accuracy and efficiency in comparison with those from analytic integration or the Monte Carlo simulation and the experimental design technique proposed by Taguchi and updated by D'Errico and Zaino.

대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석 (Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field)

  • 지효선
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.455-464
    • /
    • 2011
  • 본 논문에서는 곡선 보강 복부판의 좌굴해석을 대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 유한요소해석을 통하여 수행하였다. 수평보강재 및 수직보강재를 갖는 경우의 수직면내 곡선 복부판의 좌굴거동을 조사하기 위해 면내 모멘트 하중을 받는 경우에 대해서 복부판의 폭(b)의 변화, 보강재와 복부판의 휨-강성비(${\gamma}=EI/bD$)의 변화에 대한 변수연구를 수행하였다. 보강재를 갖지 않는 경우의 수직면내 곡선 복부판의 정적거동에 대해서도 조사되었다. 또한 모멘트 하중을 받는 경우에서 수평 보강재 및 수직 보강재의 좌굴능력이 비교 되었다.

Seismic response of utility tunnels subjected to different earthquake excitations

  • Wang, Chenglong;Ding, Xuanming;Chen, Zhixiong;Feng, Li;Han, Liang
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.67-79
    • /
    • 2021
  • The influence of ground motions on the seismic response of utility tunnels was investigated. A series of small-scale shaking table model tests were carried out under uniform excitation in the transverse direction. Different peak accelerations of EL-Centro and Taft earthquake waves were applied. The acceleration responses, earth pressure, seismic strain, bending moment and structure deformations were measured and discussed. The results showed that the types of earthquake waves had significant influences on the soil-structure acceleration responses. However, the amplitude of the soil acceleration along the depth showed consistent variation regardless of the types of earthquake waves and tunnels. The horizontal soil pressure near the top and bottom slabs showed obviously larger values than those at other depths. In general, the strain response in the outer surface was more significant than that on the inner surface, and the peak strain in the end section of the model was larger than that in the middle section. Moreover, the bending moment at the corner points was much larger than that at middle point, and the bending moment was greatly affected by both input accelerations and seismic wave types. The opposite direction of shear deformation on the top and bottom slabs presented a rotation trend of the model structure.

Prediction of plastic strength of elliptical steel slit damper by finite element analysis

  • Hossain, Mohammad I.;Amanat, Khan M.
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.249-261
    • /
    • 2022
  • This paper presents a numerical study to develop a guideline for estimating the plastic strength of elliptical steel slit damper with reasonable accuracy. The strut width increases from middle to end in elliptical steel slit damper and it is observed from the past studies that variation of the width is not considered for calculating the plastic strength of the damper. It is also noticed that the existing formulas for predicting plastic strength of this kind of damper may not be accurate and further refinement is warranted. Study is then carried on elliptical steel slit damper made of mild steel and having different geometry to find out equivalency of it with oblong steel slit damper having similar plastic strength. A few three-dimensional finite element models of seismic moment connection system with steel slit damper are developed and validated against past experiments for carrying the present study considering both the material nonlinearity as well as geometric nonlinearity. The results of the parametric studies have been compared with energy quantities and presented graphically to better understand the effects of different parameters on the system. Based on the pattern of parametric study results, closed-form semi-empirical algebraic expression of damper plastic strength is developed for elliptical steel slit damper which shows very good agreement with finite element analysis as well as experiments. This developed expression can now be used for elliptical steel slit damper in replacement with any type of damper in the design of moment connection.