• 제목/요약/키워드: Moment resisting joint

검색결과 59건 처리시간 0.018초

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Colajanni, Piero;Pagnotta, Salvatore
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.231-248
    • /
    • 2022
  • Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

Effect of bond and bidirectional bolting on hysteretic performance of through bolt CFST connections

  • Ajith, M.S.;Beena, K.P.;Sheela, S.
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.315-329
    • /
    • 2020
  • Through bolt connections in Concrete Filled Steel Tubes (CFSTs) has been proved to be good in terms of seismic performance and constructability. Stiffened extended end plate connection with full through type bolt helps to avoid field weld altogether, and hence to improve the quality of joints. An experimental study was conducted on the hysteretic performance of square interior beam-column connections using flat extended end plates with through bolt. The study focuses on the effect of the bond between the tie rod and the core concrete on the cyclic performance of the joint. The study also quantifies how much the interior joint is getting strengthened due to the confinement effect induced by bi-directional bolting, which is widely used in 3D moment resisting frames. For a better understanding of the mechanism and for the prediction of shear capacity of the panel zone, a mathematical model was generated. The various parameters included in the model are the influence of axial load, amount of prestress induced by bolt tightening, anchorage, and the concrete strut action. The study investigates the strength, stiffness, ductility, and energy dissipation characteristics. The results indicate that the seismic resistance is at par with American Institute of Steel Construction (AISC) seismic recommendations. The bidirectional bolting and bond effect have got remarkable influence on the performance of joints.

단위 모듈러 구조체의 보-기둥 접합부 해석 모델 (Analytical Models of Beam-Column joints in a Unit Modular Frame)

  • 최경석;김형준
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.663-672
    • /
    • 2014
  • 최근, 모듈러 구조 시스템은 공기를 단축시킬 수 있는 장점으로 인해 건설 현장에 적용되고 있다. 모듈러 구조시스템은 단위 모듈로 구성되며, 모듈과 모듈의 볼트접합을 위해 보-기둥 접합부에 개구부를 가공하게 된다. 일반적으로 모듈러 구조시스템은 기존 철골모멘트골조와 유사한 하중전달체계를 가지는 것으로 가정하여 설계된다. 이와 같은 설계 가정의 타당성을 확보하기 위해, 단위 모듈의 보-기둥 접합부에 대한 회전 성능이 파악되어야 한다. 본 연구에서는 개구부의 구조적 영향이 고려된 접합부의 회전성능을 파악하기 위해 유한요소해석을 수행하였다. 해석결과 단위모듈은 충분한 변형능력을 가지고 안정적인 이력거동을 하는 것으로 나타났으며, 단위모듈의 접합부는 부분강접 접합부로 분류되었다. 또한 본 연구에서는 단위 모듈의 비선형 골조 해석을 위한 간단한 스프링 모델을 개발하였으며, 단위 모듈의 비선형 이력 거동을 구현하기 위해 Ramberg-Osgood 이력 모델을 제시하였다.

철근콘크리트 기둥 및 철골보로 구성된 복합구조의 접합분 거동에 관한 실험적 연구 (Experimental Study on the Behavior of Hybrid Beam-Column Joints Consisted of Reinforced Concrete Column and Steel Beam)

  • 최근도;유영찬;이리형
    • 콘크리트학회논문집
    • /
    • 제15권2호
    • /
    • pp.297-304
    • /
    • 2003
  • 본 연구에서는 철근콘크리트 기둥과 철골보로 구성된 혼합 골조구조의 접합부에 대한 구조적 특성을 평가하였다. 주요변수로는 본 연구에서 제안한 자주식(子株式) 횡보강근 상세와 기존의 RCS 공법에서 사용되고 있는 ㄱ-4조각 조합형 및 용접형 등의 횡보강근 상세를 대상으로 하였다. 실험체는 총 5개의 내부접합부를 대상으로 2/3 축소로 제작하여 접합부의 전단 및 내진성능을 평가하였다. 실험의 결과, 모든 실험체에서 최대내력 이후 강도 및 강성의 큰 저하없이 실험이 종료되었다. 따라서, 자주식(子株式) 횡보강근을 사용한 RCS 접합부의 구조성능은 4조각 조합형 및 용접형 등의 기존 공법과 동등 이상의 구조적 성능을 확보하는 것으로 나타나 외부 판넬의 전단기여도는 압축스트러트에 의해 평가하는 것이 보다 적절할 것으로 판단된다.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

비접촉 겹침 이음된 프리캐스트 U형 보의 휨성능에 미치는 효과 (Effect of Flexural Performance on U-Shaped Precast Concrete Beams with Noncontact Lapped Splice)

  • 하상수;김승훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권6호
    • /
    • pp.119-128
    • /
    • 2008
  • 본 연구는 중진지역에서의 PC(precast conctete) 보-기둥 접합부의 새로운 모멘트-저항 시스템을 제안하는 것이다. 철근 이음형 접합부에서 연결재는 접합부를 관통하고, U형 하프 PC 보의 하부철근과 비접촉 겹칩이음으로 연결되어 있다. 비접촉 겹침이음에 대한 성능을 파악하기 위하여 실험적 연구와 해석적 연구가 수행되었다. 실험의 주요변수는 겹침길이, 연결재의 크기, 그리고 겹침이음된 연결재의 거리 등이다. 또한, 균열양상, 하중-변위 곡선, 내력 비교, 그리고 연결재의 변형 등에 초점을 맞추어 해석적 연구를 수행하여 실험결과와 비교하였다. 해석과 실험 결과 주요변수인 겹침길이, 연결재의 크기, 연결재의 비접촉 수직 거리등에 따라 강도, 연성, 그리고 접합부 거동에 큰 영향을 주는 것으로 나타났다.

Ductile cracking simulation procedure for welded joints under monotonic tension

  • Jia, Liang-Jiu;Ikai, Toyoki;Kang, Lan;Ge, Hanbin;Kato, Tomoya
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.51-69
    • /
    • 2016
  • A large number of welded steel moment-resisting framed (SMRF) structures failed due to brittle fracture induced by ductile fracture at beam-to-column connections during 1994 Northridge earthquake and 1995 Kobe (Hyogoken-Nanbu) earthquake. Extensive research efforts have been devoted to clarifying the mechanism of the observed failures and corresponding countermeasures to ensure more ductile design of welded SMRF structures, while limited research on the failure analysis of the ductile cracking was conducted due to lack of computational capacity and proper theoretical models. As the first step to solve this complicated problem, this paper aims to establish a straightforward procedure to simulate ductile cracking of welded joints under monotonic tension. There are two difficulties in achieving the aim of this study, including measurement of true stress-true strain data and ductile fracture parameters of different subzones in a welded joint, such as weld deposit, heat affected zone and the boundary between the two. Butt joints are employed in this study for their simple configuration. Both experimental and numerical studies on two types of butt joints are conducted. The validity of the proposed procedure is proved by comparison between the experimental and numerical results.

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.

Frequency variation in construction stages and model validation for steel buildings

  • Aras, Fuat
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.647-662
    • /
    • 2016
  • This study aims to monitor the variation of modal frequencies of steel buildings during their construction sequence. In this respect, construction of a steel building is followed by vibration based measurements. The monitored building is a three-story educational building within a building group whose structural system consists of steel moment resisting steel frames and eccentric braces. Five different acceleration measurements in two perpendicular directions are taken on five different construction stages, starting from the erection of the columns and beams ending with the completion of the construction. The recorded measurements are transferred into frequency domain and the dominant frequencies for each case have been determined. The change in the dominant frequencies is evaluated with the existing construction stages and performed constructional works between the stages. The last measurement, performed on the building in service, revealed the first two dominant frequencies as mutual in X and Y direction, showing that these dynamic modes are torsional modes. This result is investigated by numerical analysis performed with finite element model of the building constructed for design purpose. Lower frequencies and different mode shapes are determined from numerical analysis. The reason of lower frequencies is discussed and the vibration survey is extended to determine the effects of an adjacent building. The results showed that the building is in strong relation with an adjoining building in spite of a designed construction joint.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.