• 제목/요약/키워드: Moment plane

검색결과 345건 처리시간 0.032초

모서리 경계조건을 만족하는 접지된 유전체평면위의 저항띠 격자구조에 의한 TE 산란의 해 (Solution of the TE Scattering by a Resistive Strip Grating Over Grounded Dielectric Plane with Edge Boundary Condition)

  • 윤의중
    • 한국항행학회논문지
    • /
    • 제11권2호
    • /
    • pp.196-202
    • /
    • 2007
  • 본 논문에서는 모서리 경계조건을 만족하는 접지된 유전체층 위의 저항띠 격자구조에 의한 TE(transverse electric)산란 문제를 수치해석 방법인 FGMM(Fourier-Galerkin Moment Method)를 이용하여 해석하였다. TE 산란에 대하여 유도되는 표면 전류밀도는 스트립 양 끝에서 0의 값이 기대되며, 이때 저항띠에 유도되는 표면 전류밀도는 차수가 1인 Gegenbauer (Ultraspherical) 다항식과 적절한 모서리 경계조건을 만족하는 함수의 곱의 급수로 전개하였다. 제안된 방법의 검증을 위하여 기존의 R = 100 ohms/square 및 완전도체 경우인 균일 저항율 R = 0에 대한 정규화된 반사전력의 수치결과는 기존의 논문들과 일치하였다.

  • PDF

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

A constant tendon moment arms finger model in the sagittal plane

  • Lee, K.H.
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1992년도 추계학술대회논문집
    • /
    • pp.46-53
    • /
    • 1992
  • Finger movements in the sagittal plane mainly consist of flexion and extension about the metacarpophalangeal(MCP) and proximal interphalangeal(PIP) joints. A kinematic finger model was developed with the assumption of constant tendon moment arms. Equations of static equilibrium were derived for the finger model using the principle of virtual work. Equations of static equilibrium for the finger model were indeterminate since only three equations were available for five unknown variables(forces). The number of variables was reduced based on information on muscular activities in finger movements. Then the amounts of forces which muscles exerted to maintain static equilibrium against external loads were computed from the equilibrium equations. The muscular forces were expressed mathematically as functions of finger positions, tendon moment arms, lengths of phalanges, and the magnitude and direction of external load. The external finger strength were computed using the equations of muscular forces and anatomical data. Experiments were performed to measure finger strengths. Measurements were taken in combinations of four finger positions and four directions of force exertions. Validation of the finger models and of procedure to estimate finger strengths was done by comparing the results of computations and experiments. Significang differences were found between the predicted and measured finger strengths. However, the trends of finger strengths with respect to finger positions were similar inboth the predicted and measured. These findings indicate that the finger model and the procedure to predict finger strengths were correctly developed.

  • PDF

SWATH선의 최종 횡굽힘강도 해석 (Ultimate Transverse Bending Strength Analysis of a SWATH Ship)

  • 박치모
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

상호 작용 계수를 이용한 측추력 제트와 초음속 자유류 상호 작용에 관한 연구 (Analysis of the Interaction Between Side Jet and Supersonic Free Stream Using K-factor)

  • 김민규;이광섭
    • 한국군사과학기술학회지
    • /
    • 제15권1호
    • /
    • pp.101-110
    • /
    • 2012
  • The side jet effects between jet flow and free-stream on a missile body were investigated by experimentally and numerically for modeling aerodynamic coefficients in pitch plane. K-factors for normal force and pitching moment were introduced to estimate the side jet effects. The main parameters of the jet interaction phenomena were angle of attack, jet pressure ratio, Mach number and jet bank angle. The K-factors for normal force coefficient and pitching moment coefficients in pitch plane were analysed.

Ni 단층이 삽입된 Rh 박막의 전자구조와 자성 (Electronic Structure and Magnetism of Ni Monolyer Embedded Between Rh Layers)

  • 김선희;장영록;이재일
    • 한국자기학회지
    • /
    • 제15권1호
    • /
    • pp.7-11
    • /
    • 2005
  • 비자성 전이금속인 Rh 여러 층 사이에 자성 전이금속인 Ni 한층을 넣은 4Rh/Ni/4Rh(001) 계에서 Rh과 Ni의 자기 모멘트 진동현상을 FLAPW(full-potential linearized augmented plane wave) 방법을 이용하여 연구하였다. 가운데 층에 있는 Ni의 자기 모멘트를 계산한 결과는 0.34${\mu}_B$으로 덩치 Ni의 값보다 약 40% 감소한 값이다. Ni과의 강한 띠 혼성으로 Rh의 각 원자 층에 자기모멘트의 변화가 나타났는데 이 변화는 중심에서 표면으로 갈수록 작아지는 감쇠 진동을 하였다. Rh의 영향을 받아 가운데 Ni층의 폐르미 준위가 Ni의 에너지 띠 안쪽으로 이동하여 Ni의 전자수가 줄어들고 있음을 계산된 상태밀도 모양에서 알 수 있었다.

면내외 굽힘 효과를 고려한 최대 주응력 기반 계류 체인 피로 평가 기법 개발 (A Novel Procedure for Mooring Chain Fatigue Prediction based on Maximum Principal Stress Considering Out-of-Plane and In-Plane Bending Effects)

  • 정준모;한승오
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.237-248
    • /
    • 2016
  • As OPB and IPB moment-induced fatigue damage on mooring chain links were reported for a offloading buoy, verification of OPB and IPB fatigue has been a key engineering item in offshore structure mooring design. Mathematical and physical features of the conventional approach which was mainly explained in BV guideline are reviewed and disadvantages of the conventional approach are addressed in terms of stress proportionality and nonlinearity of OPB and IPB moments. In order to eradicate these disadvantages, a novel approach is newly proposed which is able to dispel apprehension on stress proportionality and is not dependent of nonlinearities of OPB and IPB moments. Significant differences between two approaches are suggested by comparing relations of OPB moment versus OPB interlink angle and IPB moment versus IPB interlink angle. For periodic OPB tension angle processes having three different OPB angle ranges with a simple irregular tension process, fatigue damage calculation reveals that OPB moment-induced fatigue damage has dominant portion to total fatigue damage. Comparative studies between two approaches also show that the conventional approach based on BV guideline predicts fatigue damage far conservatively since it assume unrealistic high stress concentration factor for tension load. Meanwhile IPB moment-induced fatigue damage is negligible compared to tension-induced fatigue damage.

겔-타입 인솔이 무릎 골관절염 환자의 보행에 미치는 영향 (The Effects of Gel-type Insole on Patients with Knee Osteoarthritis during Gait)

  • 은선덕;유연주;신학수
    • 한국운동역학회지
    • /
    • 제17권3호
    • /
    • pp.181-188
    • /
    • 2007
  • The purpose of this study was to investigate the biomechanical effects of wearing different type of insole shoes on gait characteristics in patients with knee osteoarthritis. Seven patients with knee osteoarthritis (Grade 3 & 4 by Kellgren & Lawrence) were participated in the study. They wore two different type of shoes (with Gel-type Insole: GIS, with Normal insole: NIS) during gait. Three dimensional cinematography and Ground Reaction Force(GRF) data were used to get the maximal value of horizontal distance between the center of pressure in GRF and knee joint center, GRF in mediolateral direction, peak value of GRF in frontal plane, vertical compressive force and adduction moment in knee joint. The results were as follows: The maximal value of horizontal distance between the center of pressure in GRF and knee joint center was smaller in GIS than NIS. The peak value of GRF in mediolateral direction was found in 30% of gait cycle, five subjects wearing GIS showed lower value of peak GRF in mediolateral direction than wearing NIS. The peak value of GRF in frontal plane and vertical compressive force in knee joint did not show any difference between GIS and NIS. The adduction moment in GIS decreased in the late stance of gait and the mean value of the adduction moment in GIS smaller than that in NIS. GIS may help to move quickly knee joint center to the center of pressure in GRF, therefore it may prevent increasing the adduction moment in knee joint.

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

연성된 과대 경사 각도를 고려한 부유식 구조물의 비선형 유체정역학 힘과 자세 (Computation of Nonlinear Hydrostatic Force and Position of a Floating Structure Considering the Coupled Large Inclined Angles)

  • 차주환;구남국;박광필
    • 한국CDE학회논문집
    • /
    • 제21권1호
    • /
    • pp.90-98
    • /
    • 2016
  • When ships and offshore plants are flooded or the floating crane is equipped with a heavy object, these floating structures are excessively inclined. In this case, immersion, heel, and trim affecting the hydrostatic restoration performance are very large and are coupled each other. In this paper, in order to calculate a static equilibrium position of floating structures with excessive inclination, the nonlinear governing equations were constructed by sequential linearization. In the governing equation, the immersion, heel, and trim are fully coupled, and the equations are represented using a plane area, a primary moment, and a moment of inertia of the water plane area. Therefore, it is possible to calculate the additional factor related the water plane area for estimating stability. Position and orientation of the floating structure are obtained by iterative calculation. The calculated results are compared with the previous studies in the aspect to the performance and the accuracy.