• Title/Summary/Keyword: Moment frames

Search Result 586, Processing Time 0.02 seconds

Effects of the isolation parameters on the seismic response of steel frames

  • Deringol, Ahmet H.;Bilgin, Huseyin
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this paper, an analytical study was carried out to propose an optimum base-isolated system for the design of steel structures equipped with lead rubber bearings (LRB). For this, 5 and 10-storey steel moment resisting frames (MRFs) were designed as Special Moment Frame (SMF). These two-dimensional and three-bay frames equipped with a set of isolation systems within a predefined range that minimizes the response of the base-isolated frames subjected to a series of earthquakes. In the design of LRB, two main parameters, namely, isolation period (T) and the ratio of strength to weight (Q/W) supported by isolators were considered as 2.25, 2.5, 2.75 and 3 s, 0.05, 0.10 and 0.15, respectively. The Force-deformation behavior of the isolators was modelled by the bi-linear behavior which could reflect the nonlinear characteristics of the lead-plug bearings. The base-isolated frames were modelled using a finite element program and those performances were evaluated in the light of the nonlinear time history analyses by six natural accelerograms compatible with seismic hazard levels of 2% probability of exceedance in 50 years. The performance of the isolated frames was assessed in terms of roof displacement, relative displacement, interstorey drift, absolute acceleration, base shear and hysteretic curve.

Simplified Nonlinear Static Progressive Collapse Analysis of Steel Moment Frames (철골모멘트골조의 비선형 정적 연쇄붕괴 근사해석)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.698-703
    • /
    • 2007
  • A simplified model which incorporates the moment-axial tension interaction of the double-span beams in a column-removed steel frame is presented in this paper. To this end, material and geometric nonlinear parametric finite element analyses were conducted for the double-span beams by changing the beam span to depth ratio and the beam size within some practical ranges. The beam span to depth ratio was shown to be the most influential factor governing the catenary action of the double-span beams. Based on the parametric analysis results, a simplified piecewise linear model which can reasonably describe the vertical, resisting force versus the beam chord rotation relationship was proposed. It was also shown that the proposed method can readily be used for the energy-based progressive collapse analysis of steel moment frames.

  • PDF

Effect of connection rotation capacities on seismic performance of IMF systems

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The seismic performance of moment frames could vary according to the rotation capacity of their connections. The minimum rotation capacity of moment connections for steel intermediate moment frames (IMF) was defined as 0.02 radian in AISC 341-10. This study evaluated the seismic performance of IMF frames with connections having a rotation capacity of 0.02 radian. For this purpose, thirty IMFs were designed according to current seismic design provisions considering different design parameters such as the number of stories, span length, and seismic design categories. The procedure specified in FEMA P695 was used for conducting seismic performance evaluation. It was observed that the rotation capacity of 0.02 radian could not guarantee the satisfactory seismic performance of IMFs. This study also conducted seismic performance evaluation for IMFs with connections having the rotation capacity of 3% and ductile connections for proposing the minimum rotation capacity of IMF connections.

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.

Composite Beam Element for Nonlinear Seismic Analysis of Steel Frames (강재 골조의 비선형 지진해석을 위한 합성 보 요소)

  • Kim, Kee Dong;Ko, Man Gi;Yi, Gyu Sei;Hwang, Byoung Kuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.577-591
    • /
    • 2002
  • This study presented a composite beam element for modeling the inelastic behavior of the steel beam, which has composite slabs in steel moment frames that are subjected to earthquake ground motions. The effects of composite slabs on the seismic behavior of steel moment frames were investigated. The element can be considered as a single-component series hinge type model whose predicted analytical results were consistent with the experimental results. Likewise, the element showed a significantly better performance than the bare steel beam elements. The composite model can also predict more accurately the local deformation demands and overall response of structural systems under earthquake loading compared with the bare steel models. Therefore, composite stabs can significantly affect locally and globally predicted responses of steel moment frames.

Development of ensemble machine learning models for evaluating seismic demands of steel moment frames

  • Nguyen, Hoang D.;Kim, JunHee;Shin, Myoungsu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.49-63
    • /
    • 2022
  • This study aims to develop ensemble machine learning (ML) models for estimating the peak floor acceleration and maximum top drift of steel moment frames. For this purpose, random forest, adaptive boosting, gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) models were considered. A total of 621 steel moment frames were analyzed under 240 ground motions using OpenSees software to generate the dataset for ML models. From the results, the GBRT and XGBoost models exhibited the highest performance for predicting peak floor acceleration and maximum top drift, respectively. The significance of each input variable on the prediction was examined using the best-performing models and Shapley additive explanations approach (SHAP). It turned out that the peak ground acceleration had the most significant impact on the peak floor acceleration prediction. Meanwhile, the spectral accelerations at 1 and 2 s had the most considerable influence on the maximum top drift prediction. Finally, a graphical user interface module was created that places a pioneering step for the application of ML to estimate the seismic demands of building structures in practical design.

Response modification and seismic design factors of RCS moment frames based on the FEMA P695 methodology

  • Mohammad H. Habashizadeh;Nima Talebian;Dane Miller;Martin Skitmore;Hassan Karampour
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.47-64
    • /
    • 2023
  • Due to their efficient use of materials, hybrid reinforced concrete-steel (RCS) systems provide more practical and economic advantages than traditional steel and concrete moment frames. This study evaluated the seismic design factors and response modification factor 'R' of RCS composite moment frames composed of reinforced concrete (RC) columns and steel (S) beams. The current International Building Code (IBC) and ASCE/SEI 7-05 classify RCS systems as special moment frames and provide an R factor of 8 for these systems. In this study, seismic design parameters were initially quantified for this structural system using an R factor of 8 based on the global methodology provided in FEMA P695. For analyses, multi-story (3, 5, 10, and 15) and multi-span (3 and 5) archetypes were used to conduct nonlinear static pushover analysis and incremental dynamic analysis (IDA) under near-field and far-field ground motions. The analyses were performed using the OpenSees software. The procedure was reiterated with a larger R factor of 9. Results of the performance evaluation of the investigated archetypes demonstrated that an R factor of 9 achieved the safety margin against collapse outlined by FEMA P695 and can be used for the design of RCS systems.

A Parallel Axial-Flexural Hinge Model for Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames (용접 철골모멘트골조의 비선형 동적 연쇄붕괴해석을 위한 병렬 소성힌지 모델의 개발)

  • Lee, Cheol Ho;Kim, Seon Woong;Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.155-164
    • /
    • 2009
  • In this study, a computationally efficient parallel axial-flexural plastic hinge model is proposed for nonlinear dynamic progressive collapse analysis of welded steel moment frames. To this end, post-yield flexural behavior and the interaction of bending moment and axial force of the double-span beams in the column's missing event was first investigated by using material and geometric nonlinear parametric finite element analysis. A piece-wise linear parallel point hinge model that captures the moment-axial tension interaction was then proposed and applied to nonlinear dynamic progressive collapse analysis of welded steel moment frames with the use of the OpenSees Program. The accuracy as well as the efficiency of the proposed model was verified based on the inelastic dynamic finite element analysis results. The importance of including the catenary action effects for proper progressive collapse resistant analysis and design was also emphasized.

Seismic Evaluation of Ordinary Moment Concrete Frames Using Capacity Spectrum Method (지반특성과 지진지역에 따른 보통모멘트 골조의 내진성능 평가)

  • 권건업;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.947-952
    • /
    • 2001
  • This study is to evaluate seismic performance of ordinary moment concrete frames. Base shear and roof displacement relations are obtained from the experiment of 3 story ordinary moment resisting concrete frame. The frame was designed only for gravity loads. The performance of the building is evaluated using capacity spectrum method. Five different seismic zones and three different soil types are considered. For each condition of seismic zone and soil type, ten earthquake ground motions are used to establish the demand spectrum.

  • PDF

Simplified Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames Using Collapse Spectrum (붕괴스펙트럼을 활용한 용접철골모멘트골조의 비선형 동적 연쇄붕괴 근사해석)

  • Lee, Cheol Ho;Kim, Seon Woong;Lee, Kyung Koo;Han, Kyu Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the behavior of column-removed double-span beams in welded steel moment frames and proposes a simplified nonlinear dynamic analysis method for the preliminary evaluation of progressive collapse potential. The nonlinear finite element analysis and the associated analytical study showed that the column gravity load and the beam span-to-depth ratio govern the maximum dynamic deformation demand of the double-span beams. Based on these results, the concept of a collapse spectrum, which describes the relationship between the gravity load parameter and the maximum chord rotation of the double-span beams, was newly proposed. A procedure for the application of the collapse spectrum to multi-story welded steel moment frames was then suggested. The inelastic dynamic finite element analysis results showed that the proposed method gives satisfactory prediction of the nonlinear progressive collapse behavior of welded steel moment frames.