• Title/Summary/Keyword: Moment arm

Search Result 98, Processing Time 0.02 seconds

Estimation of Knee Muscle Length and Moment Arm Using Knee Joint Angle (무릎 관절각을 이용한 무릎 근육 길이와 모멘트 암 추정)

  • Lee, Jae-Kang;Nam, Yoon-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.167-176
    • /
    • 2008
  • Recently, lots of studies are performed in developing of active orthosis. Exact and simple muscle force estimation is important in developing orthosis which assists muscle force for disabled people or physical laborers. Hill-type muscle model dynamics is common method for estimation of muscle forces. In Hill-type muscle model, we must know muscle length and moment arm which largely affect muscle force. And several methods are proposed to estimate muscle length and moment arm using joint angle. In this study, we compared estimation results of those method with data from body model of opensim to find which method is exact for estimation of muscle length and moment arm.

  • PDF

Effects of the moment arm length of backpacks on balance and walking while carrying a backpack (백팩 착용시 모멘트 팔의 길이가 균형과 보행에 미치는 영향)

  • In, Tae-Sung;Jang, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.418-424
    • /
    • 2019
  • The present study investigated the effects of the moment arm length on balance and walking when carrying a backpack. In total, 30 normal adults without orthopedic and neurological injuries were assessed. For each subject, balance and gait were measured under three conditions: 1) the no backpack condition, 2) the general backpack condition, and 3) the decreased length of moment arm backpack condition. There were significant differences in the center of the pressure area and velocity between the three conditions, whereas there was no significant difference in the center of the pressure area and velocity according to the moment arm length. There were significant differences in double limb support time and walking velocity under the three conditions, and there was a significant difference only in double limb support time according to the moment arm length. The results of the present study showed that a change in the length of the moment arm can be helpful for walking when carrying a backpack.

Optimal Design and Simulation of SCARA Robot Arm (스카라 로봇 암의 최적화 설계 및 시뮬레이션)

  • Lee, Jong-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.612-618
    • /
    • 2009
  • This study is concerned about the optimal design of the arm 1 and arm 2 in the SCARA robot. The mass and inertia moment of the arm I and arm 2 in a SCARA robot is greatly affected on the performance such as a cycle time, and torques loaded on $1^{st}$ axis and $2^{nd}$ axis. To reduce the mass and inertia moment, this study carried out optimal design by FEM analysis using parametric variables, which is a width, a height of the rib and a thickness of arm in the arm. The rib is adapted instead of reducing the thickness in the arm. And the simulation by computer was conducted on two given paths in X direction and Y direction. After optimal design, the result showed that maximum torque of $1^{st}$ axis and $2^{nd}$ axis reduced to maximum 9.5% on a given path.

Topology Optimization of a HDD Actuator Arm

  • Chang, Su-Young;Cho, Ji-Hyon;Youn, Sung-Kie;Kim, Cheol-Soon;Oh, Dong-Ho
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.89-96
    • /
    • 2001
  • A study on the topology optimization of a Hard-Disk-Driver(HDD) actuator arm is presented. The purpose of the present wert is to increase the natural frequency of tole first lateral mode of the HDD actuator arm under the constraint of total moment of inertia, so as to facilitate the position control of the high speed actuator arm. The first lateral mode is an important factor in the position control process. Thus the topology optimization for 2-D model of the HDD actuator arm is considered. A new objective function corresponding to multieigenvalue optimization is suggested to improve the solution of the eigenvalue optimization problem. The material density of the structure is treated as the design variable and the intermediate density is penalized. The effects of different element types and material property functions on the final topology are studied. When the problem is discretized using 8-node element of a uniform density, tole smoothly-varying density field is obtained without checker-board patterns incurred. AS a result of 7he study, an improved design of the HDD actuator arm is suggested. Dynamic characteristics of the suggested design are compared computationally with those of the old design. With the same amount of the moment of inertia, the natural frequency of the first lateral mode of the suggested design is subsequently increased over the existing one.

  • PDF

Topology Optimization of a HDD Actuator Arm (HDD 구동기 팔의 위상 최적화)

  • Chang, Su-Young;Youn, Sung-Kie;Kim, Cheol-Soon;Oh, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1801-1809
    • /
    • 2000
  • A study on the topology optimization of Hard-Disk-Driver(HDD) actuator arm in free vibration is presented. The purpose of this research is to increasse the natural frequency of the first lateral mode of the HDD actuator arm under the constraint of total moment of inertia, so as to facilitate the position control of high speed actuator am. The first lateral mode is an important factor in the position control process. Thus the topology optimization for 2-D model of the HDD actuator arm is considered. A new objective function corresponding to multieigenvalue optimization is suggested to improve the solution of the eigenvalue optimization problem. The material density of the structure is treated as the design variable and the intermediate density is penalized. The effects of different element types and material property functions on the final topology are studied. When the problem is discretized using 8-node element of a uniform density, the smoothly-varying density field is obtained without checker-board patterns incurred. As a result of the study an improved design of the HDD actuator arm is suggested. Dynamic characteristics of the suggested design are compared computationally with those of the old design. With the same amount of the moment of inertia, the natural frequency of the first lateral mode or the suggested design is subsequently increased over the existing one.

A Study on the Pivot Steering Control of an In-Wheel Drive Vehicle with Trailing Arm Suspensions (인휠 구동 트레일링 암 형식 차량의 제자리 회전 조향 제어 연구)

  • Kim, Chi-Ung;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.745-752
    • /
    • 2012
  • The pivot steering of an individual wheel motor drive vehicle is an effective steering maneuver in the narrow road, but it has become a matter of concern that the torque input of each wheel is very difficult to determine. In this study, the independent yaw moment control was proposed for the smooth pivot steering control of an in-wheel drive vehicle. For this control method, the vertical forces of tires were estimated from the trailing arm dynamic model, and the yaw moments of individual wheels were calculated from the vehicle dynamic model. Dynamic simulation results showed that the independent yaw moment control was much more effective on the minimization of the instabilities of pivot steering in comparison with the conventional direct yaw moment control with yaw rate feedback.

Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.69-81
    • /
    • 2023
  • This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for checkup. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out.

Sensorless Vibration Control of a Single-Link Flexible Manipulator (단일링크 유연매니퓰레이터의 센서리스 진동제어)

  • 한상수;신호철;서용칠;김승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.233-236
    • /
    • 2004
  • In this paper, a new sensorless vibration control scheme is proposed for a flexible manipulator system. A robust sliding mode controller incorporating with a ‘reaction moment observer’ used for the estimation of the reaction moment reciprocally acting on flexible arm and hub inertia is introduced to achieve desired control target. The rigid body dynamics of the single-link flexible manipulator is simply considered in the design of the sliding mode controller. Then, the reaction moment is estimated by the proposed reaction moment observer to suppress the residual vibration of the flexible arm. The performance of the proposed control scheme is verified by computer simulation and experiment.

  • PDF

Small-Sized Variable Stiffness Actuator Module Based on Adjustable Moment Arm (가변 모멘트 암 기반의 소형 가변 강성 액추에이터 모듈)

  • Yu, Hong-Seon;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1195-1200
    • /
    • 2013
  • In recent years, variable stiffness actuation has attracted much attention because interaction between a robot and the environment is increasingly required for various robot tasks. Several variable stiffness actuators (VSAs) have been developed; however, they find limited applications owing to their size and weight. For realizing their widespread use, we developed a compact and lightweight mini-VSA. The mini-VSA consists of a control module based on an adjustable moment arm mechanism and a drive module with two motors. By controlling the relative motion of cams in the control module, the position and stiffness can be simultaneously controlled. Experimental results are presented to show its ability to change stiffness.

Bio-mechanical Evaluation of Squatting Posture with Asymmetric Trunk Motion (몸통 비틀림 운동을 고려한 쪼그려 앉은 작업자의 요추부 작업부담 평가)

  • Lim, Dae-Seob;Kim, Young-Jin;Lee, Kyoung-Suk;Mun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.58-67
    • /
    • 2011
  • A high prevalence of protected horiculture farmer's work-related musculo-skeletal disorders (MSDs) have been reported in precedent studies. One of the tasks required ergonomic intervention to reduce the musculo-skeletal risks is the task of harvesting. The purpose of this study is to evaluate quantitatively the spinal load of worker harvesting with squatting posture to predict and prevent musculo-skeletal risks. Spinal load in Squatting posture with asymmetric trunk motion were analyzed. Before evaluating spinal load on harvesting worker by bio-mechanical approach, it is needed to validate human model. In this study, ADAMS LifeMOD human model shows satisfactory results, comparing with already validated model's results or measured results. While worker reached arms (20%, 40%, 70% arm reach) with various asymmetric trunk motion (0, 45, 90 degree), their spinal loads (extension, twisting and lateral bending moment) were evaluated. In case of extensor moment at lumbo-sacral joint, the more the arm reach got increased, the moment increased. however, in case of twisting moment and lateral bending moment, the more both arm reach and asymmetric trunk motion got increased, the moment increased significantly. The findings of this study suggest that it need to be determine the spinal load, especially twisting, lateral bending moment in evaluating musculo-skeletal workload in squatting posture.