• Title/Summary/Keyword: Moment Magnitude

Search Result 239, Processing Time 0.024 seconds

Characteristics of Tsunami Propagation through the Korean Straits and Statistical Description of Tsunami Wave Height (대한해협에서의 지진해일 전파특성과 지진해일고의 확률적 기술)

  • Cho, Yong-Jun;Lee, Jae-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.269-282
    • /
    • 2006
  • We numerically studied tsunami propagation characteristics through Korean Straits based on nonlinear shallow water equation, a robust wave driver of the near field tsunamis. Tsunamis are presumed to be generated by the earthquake in Tsuhima-Koto fault line. The magnitude of earthquake is chosen to be 7.5 on Richter scale, which corresponds to most plausible one around Korean peninsula. It turns out that it takes only 60 minutes for leading waves to cross Korean straits, which supports recently raised concerns at warning system might be malfunctioned due to the lack of evacuation time. We also numerically obtained the probability of tsunami inundation of various levels, usually referred as tsunami hazard, along southern coastal area of Korean Peninsula based on simple seismological and Kajiura (1963)'s hydrodynamic model due to tsunami-generative earthquake in Tsuhima-Koto fault line. Using observed data at Akita and Fukaura during Okushiri tsunami in 1993, we verified probabilistic model of tsunami height proposed in this study. We believe this inundation probability of various levels to give valuable information for the amendment of current building code of coastal disaster prevention system to tame tsunami attack.

Source Parameters of Two Moderate Earthquakes at the Yellow Sea Area in the Korean Peninsula on March 22 and 30, 2003 (한반도 황해 해역에서 발생한 2003년 3월 23일, 3월 30일 중규모 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Two moderate earthquakes with local magnitude 4.9 and 5.0 at the Yellow Sea area occurred successively around Hong island on March 22, 2003 and Baengnyeong island on March 30, 2003, respectively, close to the Korean Peninsula. Focal mechanisms by the waveform inversion analysis are strike slip faulting with a thrust component for the March 22 event, and normal faulting for the March 30 event. The direction of P-axes of two events were ENE-WSW which were similar to previous studies on that of P-axes in and around the Korean Peninsula. Moment magnitudes determined by the waveform inversion analysis were 4.7 and 4.5, respectively, whereas those determined by spectral analysis were 4.8 and 4.6, respectively. As regards the March 22 event, regional stress by combined tectonic forces from compressions of plates colliding to the Eurasian plate, rather than mere local stress, was indicated. However, it was estimated that the March 30 event took place when the weak zone generated from the existing collision zone was reactivated when subjected to local stress in the tensile direction. This seismological observation indirectly supports the idea that the collision zone may extend to the Korean Peninsula.

The Experimental Study on the Effect of Track System on the Integral Behavior of Railway Bridge (궤도시스템이 철도교량의 정.동적거동에 미치는 영향에 관한 실험적 연구)

  • Sung, Deok-Yong;Park, Yong-Gul;Choi, Jung-Youl;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.186-193
    • /
    • 2010
  • Track system and periodic live load are characteristics of railway bridges. In the design and construction of railway bridge, periodic live load increases the importance of dynamic behavior. And It is well known that behavior of railway bridge may be affected by track system in real bridge. Through experimental study, static and dynamic behaviors were investigated. Deflection and stress due to bending moment were measured, the location of neutral axis of each section, natural frequency, damping ratio were analyzed for each three track systems - girder only, installed ballast track system and installed concrete slab track system. According to measured values for the each type of track system, concrete track system increases the stiffness of bridge by 50%, and ballast system does by 7%, dynamic responses of structure change linearly with the magnitude of load and location of neutral axis of each sections varies with each track system. Damping ratio is almost equal without and with track. Therefore, the effects of track system on the integral behaviors of railway bridge can not be ignored in the design of bridge, especially in the case of concrete slab track system. So study of the quantitative analysis method for effects of track system must be performed.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.

An Experimental Study on the Bending Capacities of Steel-Concrete Column under the Axial Load (축력을 받는 SC 기둥의 휨 성능에 관한 실험 연구)

  • Lee, Hwan Soo;Oh, Myoung Ho;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.87-96
    • /
    • 2003
  • The Ssteel-Cconcrete (SC) Ccomposite Ccolumn is a new Ccomposite Ccolunin system, where hoops are welded between flanges of H-shapesd steel and concrete is filled in spaces between flanges are filled with con crete. Tests of SC composite columns were performed previously to determine their compression, bending and shear strength, and it showed good structural behavior. But sSince a column is usually subjected to an axial compression force, and bending it ihas needed to be bent forevaluate its structural behavior to be evaluated when its axial load and bending isaresimultaneously applied to the SC composite column. In this paper, tests were conducted to investigate the bending strength of SC composite columns subjected to axial compression force and bending moment. The parameters of the tests were concrete, a stud bolt, a hoop and a magnitude of axial compression. The test results showed that the maximum bending strength and ductility of an SC composite column were increased by 33-42% and 33-63%, respectively, comparinged to those of a bare steel column. Also, the results obtained bywith the Korean Limit State Design Code (LSD) presents a considerably safe side value compared to those of the Eurocode-4 and the Japan Code. However, wWhen the axial compression force is was increased, however, there awere considerable differences between the maximum strength obtained by the test and the LSD analysis. For this reason, it is recommended tothe use of the Eurocode-4 is recommended when calculates the strength of an SC composite column is being calculated, since the Eurocode-4 gives us a better estimation.

The Effects of the Attractiveness of an Internet Shopping Mall and Flow on Affective Commitment

  • Kang, Sung-Ju;Kim, Jae-Yeong;Park, Young-Kyun
    • Journal of Distribution Science
    • /
    • v.9 no.4
    • /
    • pp.29-42
    • /
    • 2011
  • With the many advantages of the internet, online shopping has become one of the fastest growing types of retail businesses. However, internet-based firms are much more firmly required to retain existing customers rather than secure new ones, and to make them revisit the site by strengthening trust and loyalty, thereby improving profits and outrivaling competitors. Commitment is an essential part of successful long-term relationships between buyers and sellers. Although commitments by both parties in an exchange can provide the foundation for the development of relational social norms, disproportionate commitments can lead to opportunism by the less committed partner. Moreover, flow, which is characterized by intense concentration and enjoyment, was found to be significantly linked with exploratory use behavior, which in turn was linked to the extent of computer use. The level of flow was, itself, determined by the individual's sense of being in control, and the level of challenge perceived in maneuvering a website. Website attractiveness goes hand in hand with the attractiveness of an internet shopping mall, and it can be conceptualized as the persuasive effectiveness of a message by the use of familiarity, favor, similarity, etc. It occurs when information receivers try to achieve self-satisfaction when they actually or emotionally identify themselves with an information source. This study investigates the relationship between the perceived system characteristics of an internet shopping mall and the loyalty of online consumers, and it examines how perceived website attractiveness and flow play mediating roles between the perceived system characteristics of an internet shopping mall and the affective commitment in the context of a clothes internet shopping mall. For these purposes, a structural model comprising several variables was developed. That model was tested with an analysis of moment structure (AMOS) using data from respondents who had purchased clothing through the internet during the past three months. In this model, the perceived system characteristics of an internet shopping mall, such as familiarity, reputation, uniqueness, positive emotions, self-efficacy, and interactivity, were proposed to affect the website's attractiveness and flow, and lead to a higher affective commitment over time. Thus, the perceived website attractiveness and flow were proposed as core mediating variables between perceived system characteristics and affective commitment. The results of a reliability test using Cronbach's Alpha, and a confirmatory factor analysis warranted using unidimensionality for the measures for each construct. In addition, the nomological validity of the measures was warranted from the results of a correlation analysis. The results of empirical analyses indicated that systematic attributes resulting in website attractiveness and user's characteristics, thereby triggering customers' flow, play a crucial role in inducing customers' affective commitment, and a user's characteristics are twice as important as systematic attributes in this study. Moreover, familiarity, reputation, and uniqueness all have a significant effect on website attractiveness, and the research showed that uniqueness took the first place, and that familiarity and reputation followed in order of magnitude. The fact that reputation was not the most important factor that affects the attractiveness of an internet shopping mall, with uniqueness or familiarity having a greater impact, suggests much deeper implications. Finally, positive emotion, self-efficacy, and interactivity all have a significant effect on customers' flow. In particular, the fact that positive emotion, compared to self-efficacy or interactivity, has much more impact on flow is very suggestive.

  • PDF

Application of the JMA instrumental intensity in Korea (일본 기상청 계측진도의 국내 활용)

  • Kim, Hye-Lim;Kim, Sung-Kyun;Choi, Kang-Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • In general, the seismic intensity deduced from instrumental data has been evaluated from the empirical relation between the intensity and the PGA. From the point of view that the degree of earthquake damage is more closely associated with the seismic intensity than with the observed PGA, JMA developed the instrumental seismic intensity (JMA instrumental intensity) meter that estimate the real-time seismic intensity from the observed strong motion data to obtain a more correct estimate of earthquake damage. The purpose of the present study is to propose a practical application of the JMA instrumental intensity in Korea. Since the occurrence of strong earthquakes is scarce in the Korean Peninsula, there is an insufficiency of strong motion data. As a result, strong motion data were synthesized by a stochastic procedure to satisfy the characteristics of a seismic source and crustal attenuation of the Peninsula. Six engineering ground motion parameters, including the JMA instrumental intensity, were determined from the synthesized strong motion data. The empirical relations between the ground motion parameters were then analyzed. Cluster analysis to classify the parameters into groups was also performed. The result showed that the JMA acceleration ($a_0$) could be classified into similar group with the spectrum intensity and the relatively distant group with the CAV (Cumulative Absolute Velocity). It is thought that the $a_0$ or JMA intensity can be used as an alternative criterion in the evaluation of seismic damage. On the other hand, attenuation relation equations for PGA and $a_0$ to be used in the prediction of seismic hazard were derived as functions of the moment magnitude and hypocentral distance.

Interaction Analysis between Tapered Sectional Launching Nose and Superstructure Section of ILM Concrete Bridge (변단면 압출추진코와 ILM 교량 상부단면의 상호작용 해석)

  • Lee Hwan-Woo;Jung Du-Hwoe;Ahn Tae-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.139-150
    • /
    • 2006
  • ILM(incremental launching method) bridge is one of the prestressed concrete bridge construction methods widely adopted owing to its effectiveness for the quality control. The sections of the launched superstructure pass every position of the bridge spans. This launching process causes the bridge sections to be experienced in the quite different stress states with the stress state occurred after construction completely. Due to the self weight of sections, particularly, the superstructure sections(deck) experience maximum positive and negative moment as well as maximum shear force during launching process. To minimize the temporarily caused sectional forces, launching nose is generally used in the construction method. Therefore, the magnitude of this sectional forces should be checked for the safety of super structure in construction and it is dependent on the structural characteristics of launching nose. In this study, the simplified formulas to analyze the sectional force occurred by the nose-deck interaction in ILM construction are developed. The considering parameters are the span length ratio, stiffness ratio and weight ratio between the launching nose and the super structure. In particular, the developed formulas can consider the tapered sectional shape of launching nose and the diaphragm wall in the superstructure. Additionally, the sensitivity analysis is performed to analyze the effects of nose-deck interaction according to the design parameters.

Experimental Study on Stability of Revetment on Inland Slope of River Levee for Prevention of Failure due to Overtopping (제방뒷비탈 월류보호공의 안정성 분석을 위한 수리실험 연구)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.712-721
    • /
    • 2017
  • Recently, the intensity and frequency of floods has increasing worldwide, and flood disasters have become a big problem. Flood disasters, which account for the largest portion of disasters, are floods accompanied by typhoons and localized heavy rainfall. As a result, they cause damage of levee overtopping, in which the water level of a river rises to the levee crown. Therefore, countermeasures are essential and necessary because of the damage to the facility itself as well as to life and other property. The damage magnitude depends on the collapse of the levee. A levee that is difficult to collapse will reduce the discharge inland significantly. Accordingly, the protection of the inland slope, where the collapse of the levee is initiated, is one of the most important countermeasures In this study, revetments with various porosity and forms were suggested and hydraulic experiments were carried out for each type. The hydraulic experiments showed that the stability of a revetment in an inland slope is strongly correlated with the weight per unit area of the revetment. The relationship between the critical velocity, which is the velocity at the moment of leaving the revetment, and the weight per unit area was derived. Through this study, by applying the nature friendly revetment, which has not yet been applied to Korea, it is expected that life and property damage caused by levee overtopping during flooding can be reduced, and a nature friendly river space can be constructed.

Analysis of the Dynamic Characteristics on Aerodynamic Loads of Wind Turbine Blade with New Airfoil KA2 (신규 익형 KA2가 적용된 풍력 블레이드의 공력 하중에 대한 동특성 해석)

  • Kang, Sang-Kyun;Lee, Ji-Hyun;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.63-70
    • /
    • 2015
  • This paper proposes a novel airfoil named "KA2" for the blade of the wind turbine systems. Dynamic loads characteristics are analyzed and compared using aerodynamic data of ten airfoils including the proposed airfoil. The blade is divided into the sixteen elements in the longitudinal direction of the blade for applying the Blade Element Method Theory (BEMT) method, and in each element, torque, thrust, and pitching moment are calculated using turbulent time varying wind speed and aerodynamic data of each wing. Additionally, each force and torque is accumulated in the whole region of the blade for the estimation of representative values. The magnitude of such forces is comparatively analyzed for different airfoils. The angle of attack is constant below the rated wind speed due to the fact that the tip speed ratio is kept at the constant value, and it increases in the region of over rated wind speed as the tip speed ratio decreasing with constant rated rpm and increasing wind speed. Such increase in the angle of attack causes the changes of the force acting on the airfoil with different characteristics of lift and drag in the stall region of each different airfoil. Even though the mean wind speed is in the rated speed in a given time, because of the turbulence, it has either the over rated or under rated speed most of the time. Furthermore, the dynamic properties of each force are analyzed in this rated wind speed in order to objectively understand the dynamic properties of the blades which are designed based on the different airfoils. These dynamic properties are also compared by the standard deviation of time varying characteristics. Moreover, the output characteristics of the wind turbine are investigated with different airfoils and wind speeds. Based on these investigations, it was revealed that the proposed airfoil (KA2) is well applicable to the blade with passive pitch control system.