• Title/Summary/Keyword: Molten wood's metal

Search Result 2, Processing Time 0.017 seconds

Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water (과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구)

  • Heo, Hyo;Jerng, Dong Wook;Bang, In Cheol
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

Investigation of Molten Fuel Relocation Dynamics with Applications to LMFBR Post-Accident Fuel Relocation

  • Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.88-98
    • /
    • 1980
  • The process of solidification of a single-phase flowing hot fluid in a cylindrical tube has been investigated analytically and experimentally. A series of tests were performed, using paraffin -wax and Wood's metal as flowing hot fluids. These data verified the existing quasistatic numerical analysis model of freezing process developed at Brookhaven National Laboratory In addition, experimental results provided information regarding the effects of various parameters on the .process of transient flowing and freezing through a vertical channel. The experimental apparatus and techniques are described. Comparison of experimental data with predictions of mathematical models for transient molten fluid displacement are presented in graphical form. In addition, the mathematical model is applied to LMFBR post-accident conditions.

  • PDF