• 제목/요약/키워드: Molten temperature

검색결과 585건 처리시간 0.019초

쌍롤 연속 주조에서의 난류 유동, 온도 및 응고 예측을 위한 연구 (A Numerical Study of Turbulent Flow, Heat Transfer, and Solidification in Twin-Roil Continuous Casting)

  • 하만영;최봉석
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.12-24
    • /
    • 1999
  • A computer program has been developed for analyzing the two-dimensional, unsteady conservation equations for transport phenomena in the molten region of twin-roll continuous casting in order to predict the turbulent velocity, temperature fields, and solidification process of the molten steel. The energy equation of the cooling roll is solved simultaneously with the conservation equations of molten steel in order to consider heat transfer through the cooling roll. The results show the velocity, temperature and solidification pattern in the molten region with roll temperature as a function of time. The results for velocity and temperature fields with solidification are compared with those without solidification, giving different thermofluid characteristics in the molten region. We also investigated the effects of revolutional speed of roll, superheat and nozzle geometry on the turbulent flow, temperature and solidification in the molten steel and temperature fields in the cooling roll.

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

레이저 빔에 의해 생성된 금속액적의 충돌거동 (Collision Behavior of Molten Metal Droplet by Laser Beam)

  • 김용욱;양영수
    • 한국레이저가공학회지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2003
  • A molten metal droplets are deposited onto solid substrate for solid freeform fabrication, Collision dynamic and substrate heat transfer associated with solidification determine the final shape of molten metal droplets. In this study, the experimental model, based on the variational condition with substrate temperature and falling height, was produced reliable optimal data of droplet pattern.

  • PDF

800℃ 용융염 환경에서 부식된 재료의 마모 성능 평가 (Evaluation of Wear Performance of Corroded Materials in an 800℃ Molten Salt Environment)

  • 최용석;박경렬;강성민;김운성;정경은;이지하;하태웅;이경준
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.97-102
    • /
    • 2024
  • The next-generation Molten Salt Reactor is known for its high safety because it uses nuclear fuel dissolved in high-temperature molten salt, unlike traditional solid atomic fuel methods. However, the high-temperature molten salt causes severe corrosion in internal structural materials, threatening the reactor's safety. Therefore, it is crucial to investigate the high-temperature corrosion resistance and wear performance of materials used in reactors to ensure safety. In this study, the high-temperature corrosion resistances and wear performances of corrosion samples in a NaCl-MgCl2-KCl (20-40-40 [wt%]) molten salt are investigated to evaluate the applicability of economically viable stainless steels, 316SS and 304SS. Hastelloy C276 and a new alloy containing a small amount of Nb are used as reference samples for comparative analysis. The mass loss, mass loss rate per unit volume, and surface roughness of each sample are measured to understand the corrosion mechanisms. Scanning electron microscopy and energy-dispersive spectroscopy analyses are employed to analyze the corrosion mechanisms. Wear tests on the corroded samples are also conducted to assess the extent of corrosion. Based on the experimental results, we predict the lifespans of the materials and evaluate their suitability as candidate materials for molten salt reactors. The data obtained from the experiments provide a valuable database for structural materials that can enhance the stability of molten salt reactors and recommend high-temperature corrosion-resistant materials suitable for next-generation reactors.

세라믹 기판에 대한 저온 용융프릿트의 침윤 거동 (Wetting Behavior of Low Temperature Molten Frits on Various Ceramic Substrates)

  • 노태준;오근호;이종근;김대웅
    • 한국세라믹학회지
    • /
    • 제20권3호
    • /
    • pp.199-204
    • /
    • 1983
  • An attempt was made to study wetting behavior of various low temperature molten frist on ceramic substrates including high alumina silicon carbide and porous fired clay plates by Sessile-drop method. The cosine values of contact angles between substrates and molten frist were linear as a function of temperature unless chemical reactions between substrate and molten frit occured. Addition of BaO to frit composition indicated that cosine of values of contact angles were gradually increased with increasing temperature but in the frist contained $Li_2O$ consine values were abruptly increased with increasing temperature after reached a certain temperature. The contact angle increased with increasing roughness of the substrate surface in case of alumina substrate plate.

  • PDF

Al$_2$O$_3$/Al 복합체 제조시 용융 알루미늄의 치환반응에 미치는 금속 마그네슘의 영향 (Effects of Metal Mg on Replacement Reaction of Molten Al for Fabrication of $Al_2$O$_3$//Al Composites)

  • 정두화;배원태
    • 한국세라믹학회지
    • /
    • 제35권1호
    • /
    • pp.23-32
    • /
    • 1998
  • 전융실리카 분말로 소결하여 만든 sihca preform을 마그네슘이 함유된 용융 알루미늄에 침적시킨후 공기중에서 반응시켜 Al2O3/Al 복합체를 제조하였다. 복합체 제조시 반응온도의 변화에 대해 용융 알루미늄의 침투거동을 조사한 결과 3가지 영역, 즉 저온영역(75$0^{\circ}C$-85$0^{\circ}C$), 중온영역(90$0^{\circ}C$-95$0^{\circ}C$), 고온영역(100$0^{\circ}C$$\leq$)으로 구분되었다. 저온영역에서는 반응온도에 비례해서 침투속도가 증가하였으나, 중간온도 영역은 치환반응에 의해 생성된 알루미나의 상전이에 따른 영향으로 저온영역인 85$0^{\circ}C$에서보다 오히려 침투속도가 감소하였다. 고온영역중 100$0^{\circ}C$이상에서 침투가 일어나지 않는 것은 용융 알루미늄중의 마그네슘이 먼저 실리카와 반응하여 silica preform의 표면에 치밀한 스피넬층을 형성하기 때문으로 판명되었다.

  • PDF

Transfer characteristics of a lithium chloride-potassium chloride molten salt

  • Mullen, Eve;Harris, Ross;Graham, Dave;Rhodes, Chris;Hodgson, Zara
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1727-1732
    • /
    • 2017
  • Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride-potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to $500^{\circ}C$. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

고체철-용융아연의 용해반응 (The Dissolving Reaction of Solid Iron with Molten Zinc)

  • 윤병하;정인상;박경채
    • 한국표면공학회지
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 1976
  • The dissolving and growth kinetics of intermetallic compounds for the reaction between solid iron and molten zinc were studied under nitorgen atmosphere over the temperature range between470$^{\circ}C$ and 680$^{\circ}C$. The rates of dissolution of solid iron into molten zinc were obtained under a static conditon, The amount of dissolution of sold iron and the growth of intermetalic compounds could be determined by means of microscopy. The thickness of intermetallic compound at a given temperature increases with increasing time, whereas for a given time decreases with increasing temperature . The rate of dissolution is controlled by the diffusion process of iron in the effective boundary layer of molten zinc over the temperature range 470$^{\circ}$-530$^{\circ}C$, 570$^{\circ}$-620$^{\circ}C$, and 650$^{\circ}$-665$^{\circ}C$, while by the surface reaction over the range 530$^{\circ}$-570$^{\circ}C$ and 620$^{\circ}$-650$^{\circ}C$.

  • PDF

용탕조건에 따른 상용 차량용 어댑터 하우징의 열적특성에 관한 연구 (A Study on Thermal Characteristics of Adaptor Housing for Commercial Vehicles according to Molten Metal Condition)

  • 고동국;명순식;강병용;김민수
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.745-750
    • /
    • 2018
  • In this study, the thermal behavior of adaptor housing was analyzed by the numerical method. The boundary conditions used to die casting process were the temperature of molten metal and injection time. As the temperature of the molten metal increased, the tensile strength of the product decreased by the blow hole generated in the molten metal, and the decreasing tendency was gradually decreased. As the injection time of the molten metal increased, the heat flux rose, but the degree of the increase was very small. So, the injection time of the molten metal had little effect on the thermal behavior and diffusion of the adapter housing. As a result, the heat of the molten metal was transferred into the housing and the thermal behavior spread widely.

쌍롤식 박판 연속주조공정에 있어서 용탕과 냉각롤의 접촉 열저항을 고려한 전열해석 (Thermal Analysis on Twin-Roll Type Strip Continuous Casting Process Considering Contact Thermal Resistance between Molten Metal and Cooling Roll)

  • 김영도;강충길
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.189-205
    • /
    • 1996
  • The twin-roll type strip continuous casting process(or direct rolling process) of steel materials is characterized by two rotating water cooled rolls receiving a steady supply of molten metal which solidifies onto the rolls. A solidification analysis of molten metal considering phase transformation and thermofluid is performed using finite diffefence method with curvilinear coordinate to reduce computing time and molten region analysis with arbitrary shape. An enthalpy-specific heat method is used to determine the temperatures inthe roll and the steel. The temperature distribution of cooling roll is calculated using two dimensional finite element method, because of complex roll shape due to cooling hole in rolls and improvemnt accuracy of calculation result. The energy equaiton of cooling roll is solved simultanuously with the conservation equaiton of molten metal in order to consider heat transfer through the cooling roll. The calculated roll temperature is compared to experimental results and the heat transfer coefficient between cooling roll surface and rolling material(steel) is also determined from comparison of measured roll temperature and calculated temperature.