• Title/Summary/Keyword: Molten state

Search Result 138, Processing Time 0.039 seconds

Characterization of the molten globule conformation of V26A ubiquitin by far-UV circular dichroic spectroscopy and amide hydrogen/deuterium exchange

  • Park, Soon-Ho
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • The molten globular conformation of V26A ubiquitin (valine to alanine mutation at residue 26) was studied by nuclear magnetic resonance spectroscopy in conjunction with amide hydrogen/deuterium exchange. Most of the amide protons that are involved in the native secondary structures were observed to be protected in the molten globule state with the protection factors from 1.2 to 6.7. These protection factors are about 2 to 6 orders of magnitude smaller than those of the native state. These observations indicate that V26A molten globule has native-like backbone structure with marginal stability. The comparison of amide protection factors of V26A ubiquitin molten globule state with those of initial collapsed state of the wild type ubiquitin suggests that V26A ubiquitin molten globule state is located close to unfolded state in the folding reaction coordinate. It is considered that V26A ubiquitin molten globule is useful model to study early events in protein folding reaction.

Conductivity Behavior of Sodium and Potassium Aluminosilicate Glass Melts

  • Kim, Ki-Dong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.209-213
    • /
    • 1995
  • The electrical conductivity was investigated in two series of alkali aluminosilicate glass melts, $25R_2O(R: Na and K)-xAl2O3-(75-x)SiO_2$ at temperatures ranging from 1000 to 140$0^{\circ}C$. The dependences of conductivity or activation energy on $Al_2O_3/R_2O$ of both series in the molten state showed a same behavior. These results in the molten state were compared with previous studies for sodium alkali aluminosilicate glasses in the molten and solid state, and explained in terms of the binding state: $[-O]-R^+\; and\; [AlO_4]-R^+$.

  • PDF

Hydrophobic Core Variant Ubiquitin Forms a Molten Globule Conformation at Acidic pH

  • Park, Soon-Ho
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.676-683
    • /
    • 2004
  • The conformational properties of hydrophobic core variant ubiquitin (Val26 to Ala mutation) in an acidic solution were studied. The intrinsic tryptophan fluorescence emission spectrum, far-UV and near-UV circular dichroic spectra, the fluorescence emission spectrum of 8-anilinonaphthalene-1-sulfonic acid in the presence of V26A ubiquitin, and urea-induced unfolding measurements indicate this variant ubiquitin to be in the partially folded molten globule conformation in solution at pH 2. The folding kinetics from molten globule to the native state was nearly identical to those from the unfolded state to the native state. This observation suggests that the equilibrium molten globule state of hydrophobic core variant ubiquitin is an on-pathway folding intermediate.

ANALYSIS OF EQUILIBRIUM METHODS FOR THE COMPUTATIONAL MODEL OF THE MARK-IV ELECTR OREFINER

  • Cumberland, Riley;Hoover, Robert;Phongikaroon, Supathorn;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.547-556
    • /
    • 2011
  • Two computational methods for determining equilibrium states for the Mark-IV electrorefiner (ER) have been assessed to improve the current computational electrorefiner model developed at University of Idaho. Both methods were validated against measured data to better understand their effects on the calculation of the equilibrium compositions in the ER. In addition, a sensitivity study was performed on the effect of specific unknown activity coefficients-including sodium in molten cadmium, zirconium in molten cadmium, and sodium chloride in molten LiCl-KCl. Both computational methods produced identical results, which stayed within the 95% confidence interval of the experimental data. Furthermore, sensitivity to unavailable activity coefficients was found to be low (a change in concentration of less than 3 ppm).

Characterization of uranium species in molten salt : An application of synchrotron-based XAFS spectroscopy

  • Cho, Young-Hwan;Choi, In-Kyu;Kim, Won-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.10a
    • /
    • pp.319.2-319
    • /
    • 2002
  • Synchrotron-based X-ray absorption spectroscopy has been applied to determine the changes in bulk oxidation state of uranium oxides in molten salt. From an analysis of XANES data, one can determine the cahnges in bulk oxidation-state of U compounds in salts(LiCl/KCl). XAFS spectroscpy is a powerful tool for probing the changes in valence state and structure of uranium compounds in colten salt as well as in noncrystalline form and doped in other matrices.

  • PDF

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Study of Corrosion behavior of the Separator for MCFC

  • Kim, Gwi-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.283-285
    • /
    • 2007
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the molten carbonate fuel cell which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of stainless steels has been done 62 mole% $Li_2CO_3$ and 38 mole% $K_2CO_3$ melt at 923 K by using steady-state polarization method and electrochemical impedance spectroscopy method. It was found that SUS 310L and Al coating specimen may be the best choice among the alloys tested in this study for molten carbonate fuel cell component material.

Effect of the Coaling and Annealing on Noncorrosive of Fuel Cell Separator (코팅과 열처리가 연료전지 분리판의 내식성에 미치는 영향)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.1000-1003
    • /
    • 2007
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the molten carbonate fuel cell which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. One of the material problems is the severe corrosion of the metallic components, such as the separator. The effect of coating and annealing treatment on the corrosion for SUS 304 and SUS 430 which are the candidate materials for molten carbonate fuel cell hardware has been investigated in molten carbonate at $650^{\circ}C$ by using steady state polarization and electrochemical impedance spectroscopy method. It was found that the corrosion current of these SUS 304 and SUS 430 decreased with coating and annealing treatment.

Cf/C-Cu- New Sliding Electrical Contact Materials

  • Ran, Liping;Yi, Maozhong;Peng, Ke;Yang, Lin;Ge, Yicheng
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.94-96
    • /
    • 2009
  • [ $C_f/C-Cu$ ]composites were fabricated by infiltrating molten Cu into different $C_f/C$ preforms prepared by chemical vapor infiltration, resin impregnation and carbonization. The microstructure and properties of the composites were investigated. The results show that Cu in the composites filled the pores and showed network-like distribution. Compared with homemade J204 brush material and certain grade pantograph slider from abroad, the composites have higher flexural strength and better electrical conductivity. The friction and wear properties of the composites are better than that of J204, and closed to that of the abroad material.

Electrochemical Properties of Yttria Stabilized Zirconia Binder for Thermal Batteries (이트리아 안정화 지르코니아 바인더에 의한 열전지 전기화학적 특성)

  • Kim, Jiyoun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.331-337
    • /
    • 2017
  • Thermal batteries, reserve power source, is activated by melting of molten salt at the temperature range of $350{\sim}550^{\circ}C$. To immobile the molten state electrolyte when the thermal battery is activated, the binder must be added in electrolyte. Usually, molten salts include 30~40 wt% of MgO binder to ensure electrical insulation as well as safety. However, the conventional MgO binder tends to increase ionic conductive resistance and thus the inclusion of the binder increases the total impedance of the battery. This paper mainly focused on the study of yttria stabilized zirconia (YSZ) as an alternative binder for molten salt. The chemical stability between the molten salt and YSZ is measured by XRD and DSC. And the sufficient path for ionic conduction on molten salt could be confirmed by the enhanced wetting behavior and the enlarged pore size of YSZ. The electrochemical properties were analyzed using single cell tests so that it showed the outstanding performance than that using MgO binder.