• 제목/요약/키워드: Molten Al alloy

검색결과 88건 처리시간 0.03초

진공가스분무한 AZ31+1%MM 합금 분말의 미세조직 특성 (Microstrucual Characterization of Vacuum Gas Gas Atomized AZ31+1%MM Alloy Powders)

  • 김연옥
    • 한국분말재료학회지
    • /
    • 제6권3호
    • /
    • pp.231-237
    • /
    • 1999
  • In this study, the characteristics of gas atomized Mg-3wt%Al-1wt%Zn-1wt%MM alloy powders under vacuum condition were investigated. In spite of the low fluidity and easy oxidation of the molten magnesium, the spherical powders could be successfully produced by using a modified three pieces nozzle attached to the gas atomization unit. It was found that most of the solidified powders less than 50$\mu$m in diameter were single crystal and the solidified structure showed a typical dendritic morphology due to supercooling prior to nucleation. The secondary dendrite arm spacing decreased as the size of powders decreased. The Mg-Al-Ce intermetallic compounds with chemically stable phase were found in the interdendritic regions of $\alpha$-Mg. It is considered that formation of the chemically stable phase may possibly affect to improve the corrosion resistance. Therefore, it is expected that the materials formed of these Mg-Al-Zn-MM alloy powders shows better mechanical properties and corrosion resistance due to the structural refinement.

  • PDF

임피던스법을 적용한 연료전지의 성능평가 (Analysis on the Fuel Cell Performance by the Impedance Method)

  • 김귀열
    • 한국전기전자재료학회논문지
    • /
    • 제20권10호
    • /
    • pp.918-923
    • /
    • 2007
  • Fuel cell is a modular, high efficient and environmentally energy conversion device, it has become a promising option to replace the conventional fossil fuel based electric power plants. The high temperature fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. Corrosions in molten electrolytes and the electric conductivity across the oxide scale have crucial characteristics. When molten salts are involved, high temperature corrosions become severe. In this sense, corrosions of alloys with molten carbonates have the most severe material problems. Systematic investigation on corrosion behavior of Fe/21Cr/Ti or Al alloy has been done in (62+38)mol% (Li+K)$CO_3$ melt at $650^{\circ}C$ using the electrochemical impedance spectroscopy method. It was found that the corrosion current of these Fe-based alloys decreased with increasing Al or Ti. And Al addition improved the corrosion resistance of this type of specimen and more improvement of corrosion resistance was observed at the specimen added with Al.

반용융가공에 의한 $Al_2O_3/Al$ 복합재료의 제조 및 열간압출공정 (Fabrication of $Al_2O_3/Al$ Composite Materials by Mashy State Forming and its Hot Extrusion Process)

  • 강충길;강성수
    • 한국주조공학회지
    • /
    • 제13권3호
    • /
    • pp.248-258
    • /
    • 1993
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by stirring of A17075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semisolid alloy. The fabrication possibility of fiber-reinforced aluminum alloy containing $Al_2O_3$ short fibers with vigorous agitation of short fibers were obtained by control of stirring time, solid fraction and impeller speed in extrusion billet fabrication processes. The microstructure to extrusion billet fabricated by low pressure casting was investigated for fiber dispersion state. The relationship between the extrustion force and velocity at hot extrustion, the flow strain and extrusion ratio were theoretically described. The surface defects with lubricants and without lubricant after hot extrusion were investigated. The composites materials after hot extrusion were measured by vickers hardness with extrusion ratio. It has become clear that the secondary working such as hot extrusion was very useful to obtained improved the mechanical properties of metal matrix composites.

  • PDF

알루미나/Ag-Cu-Zr-Sn 브레이징 합금계면의 미세조직 (Evolution of Interfacial Microstructure in Alumina and Ag-Cu-Zr-Sn Brazing Alloy)

  • 김종헌;유연철
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.481-488
    • /
    • 1998
  • The active metal brazing was applied to bond Alumina and Ni-Cr steel by Ag-Cu-Zr-Sn alloy and the interfacial microstructure and reaction mechanism were investigated. Polycrystalline monoclinic $ZrO_2$ with a very fine grain of 100-150 nm formed at the alumina grain boundary contacted with Zr segregation layer at the interface. The $ZrO_2$ layer containing the inclusions and cracks were developed at the boundary of inclusion/$ZrO_2$ due to the difference in specific volume. The development of $ZrO_2$ at the interface was successfully explained by the preferential penetration of $ZrO_2$ at the interface was successfully explained by the preferential penetration of Zr atoms a higher concentration of oxygen and a high diffusion rate of Al ions into molten brazing alloy.

  • PDF

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

불화물계 용융염중에서 Steel 기지 소재의 Al 전해피복에 관한 연구 (A Study on Metalliding of Al on Steel from Molten Fluorides)

  • 이민구;서길원;백영현
    • 한국표면공학회지
    • /
    • 제26권4호
    • /
    • pp.183-191
    • /
    • 1993
  • Diffusion coating(metalliding) of aluminium on steel from molten fluorides(29.2wt.% LiF-11.7wt.% NaF-59.1wt.% KF, FLINAK) was studied. The electrolytic cell consists of a steel cathode and a consumable aluminium anode. Effects of manganese on the aluminium deposition were also investigated. The quality of the deposit was analyzed by SEM, OM, EPMA, EDXA, and also examined by means of Micro-Vickers hardness and corrosion tests. Deposit layer was identified as an aluminium-rich iron alloy caused by diffusion process. The optimum condition for the metalliding was found to be the current density, 50 to $150mA/\textrm{cm}^2$, the bath tem-perature, $57.5^{\circ}C$, and the amount of AlF3, 10wt.%. Addition of manganese fluoride (up to 5wt.%) as a co-de-posit element improved significantly the quality of the deposit layer.

  • PDF

용융아연도금욕에 적용되는 용탕에 따른 Ni합금의 부식성 분석 (Corrosion Analysis of Ni alloy according to the type of molten metal)

  • 백민숙
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.459-463
    • /
    • 2017
  • 대부분의 용용융아연도금 설비는 오픈된 공간에서 용융된 아연을 사용하고 있기 때문에 용융된 아연의 용탕에서 발생되는 고온, Zn Fume 등에 의한 산화가 발생되고 있다. 현재 설비에 사용되고 있는 소재는 SM45C(기계구조용 탄소강, KS규격)으로 사용되고 있다. Zn Fume이 집중적으로 발생되고 있는 부분의 설비를 부분적으로 고온, Zn Fume에 강한 재료를 사용한다면 설비의 수명과 성능향상에 도움이 될 것으로 예상된다. 따라서 본 연구에서는 직접 설계한 Ni 합금과 Inconel 합금을 직접 고온, Zn Fume 환경에서 산화 시켜 각각의 부식성을 확인하여 비교 분석하였으며, 용융아연도금에 사용되는 용탕의 종류를 나누어 용탕에 따른 각 합금의 부식성 등을 확인하여 보았다. 500~700도로 내에 Zn, Al-Zn 용탕을 두고 Ar 가스를 이용하여 용탕에서 직접 버블링하여 Zn fumef를 발생시켜 고온, Zn fume에 의해 강제 부식을 행하는 실험을 하였다. 30일 후의 sample들을 꺼내어 표면의 산화층을 광학현미경, SEM으로 확인하고, 동전위분극 시험을 이용하여 부식성을 분석하였으며, 부식성은 용탕의 종류에 따라 달라지는 모습을 보였다.

용융탄산염 연료전지용 Ni-Al 합금 anode의 소결 및 creep 특성 (Sintering and Creep Characteristics of the Ni-Al Alloy Anode for Molten Carbonate Fuel Cells)

  • 오인환;한재일;윤성필;임태훈;남석우;하흥용;홍성안
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.24-33
    • /
    • 2002
  • 기존 Ni-10w/o Cr 연료극과 성능은 대등하면서 creep 저항성이 뛰어난 연료극을 제조하기 위하여 Ni-5w/o Al 합금 연료극의 제조 공정을 연구하였다. 소성 분위기에 따라 완전산화 방법과 부분산화 방법으로 나누어 제조된 전극들의 미세구조 변화를 관찰하였으며, 실험 결과 부분산화 방법으로 제조한 Ni-5w/o Al 합금 연료극이 가장 우수한 소결 및 creep 저항성을 나타내었다. 이는 연료극이 산화물 분산강화 구조를 갖기 때문으로 부분산화 방법으로 제조한 Ni-5w/o Al 합금 연료극을 장착한 단전지의 경우 기계적 안정성 및 전극 안정성이 향상되었다.

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

회전원반분사법에 의한 CuA1Ni계 합금 분말제조 (Powder Production of CuAINi Base Alloy via Rotating Disk Atomization)

  • 류봉선
    • 한국분말재료학회지
    • /
    • 제1권2호
    • /
    • pp.145-152
    • /
    • 1994
  • Atomizing mode and powder characteristics of CuA1Ni base shape memory alloy in rotating disk atomization were investigated in accordance with disk materials and additional elements. Produced powders were classified into two types of spherical and flake shape. In the case of CuAlNiBTi and CuAlNiZr alloy, high yield rate and fine powder were obtained. This tendency was same when we used oxide coated disks. We concluded that this results were steno from the wetting characteristics change between molten metal and disk surface. Especially, due to the reactive properties of Ti and Zr with ceramic disk, the change of atomizing appearance and powder characteristics were noticeable.

  • PDF