• Title/Summary/Keyword: Molecular sequence

Search Result 2,866, Processing Time 0.026 seconds

A 100 kDa Protein Binding to bHLH Family Consensus Recognition Sequence of RAT p53 Promoter

  • Lee, Min-Hyung;Park, Sun-Hee;Song, Hai-Sun;Lee, Kyung-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.205-210
    • /
    • 1997
  • p53 tumor suppressor plays an important role in the regulation of cellular proliferation. To identify proteins regulating the expression of p53 in rat liver, we analyzed p53 promoter by electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay. We found that a protein binds the sequence CACGTG, bHLH consensus sequence in rat p53 promoter. Southwestern blotting analysis with oligonucleotides containing this sequence shows that the molecular weight of the protein is 100 kDa. This size is not compatible with the bHLH family such as USF or c-Myc/Max which is known to regulate the expression of the human and mouse p53 gene. Therefore this 100 kDa protein may be a new protein regulating basal transcription of rat p53. We purified this 100 kDa protein through sequence-specific DNA affinity chromatogaphy.

  • PDF

Cloning and Characterization of a Gene Encoding 22 kDa Functional Protein of Bacteriophage MB78

  • Gupta, Lalita;Chakravorty, Maharani
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.161-166
    • /
    • 2005
  • Functional protein of MB78 bacteriophage having apparent molecular weight of 22 kDa is expressed from 1.7 kb HindIII G fragment. The nucleotide sequence of this fragment showed two open reading frames of 222 and 196 codons in tail-to-tail orientation separated by a 62-nucleotide intercistronic region. The ORF of 22 kDa protein is present in opposite orientation, i.e. in the complementary strand, preceded by a strong ribosomal binding site and a promoter sequence. Another ORF started from the beginning of the fragment whose promoter region and translational start site lies in the 0.45 kb HincII U fragment which is located next to the HindIII G fragment, that has the sequence for DNA bending. 3' end of the fragment has high sequence homology to the EaA and EaI proteins of bacteriophage P22, a close relative of MB78 phage.

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

Screening of the Antigen Epitopes of Basic Fibroblast Growth Factor by Phage Display

  • Xiang, Junjian;Zhong, Zhenyu;Deng, Ning;Zhong, Zhendong;Yang, Hongyu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.290-293
    • /
    • 2005
  • In order to investigate the epitope of basic fibroblast growth factor (bFGF) and its immunogenicity, the epitopes of bFGF were screened from the phage display library with monoclonal antibody GF22, which can neutralize the bio-activity of bFGF. By three rounds of screening, the positive phage clones with bFGF epitopes were selected, which can effectively block the bFGF to bind with GF22. Sequence analysis showed that the epitopes shared a highly conservative sequence (Leu-Pro-Pro/Leu-Gly-His-Phe/Ile-Lys). The sequence of PPGHFK was located at 22-27 of the bFGF. The specific immuno-response of mouse could be highly induced by phage clones with the epitopes. And the anti-bFGF activity induced by LPGHFK was 3 times higher than the original sequence, which showed that the mimetic peptide LPLGHIK might be used as a tumor vaccine in the prevention and treatment of tumor.

Molecular Cloning of the nahC Gene Encoding 1,2-Dihydroxynaphthalene Dioxygenase from Pseudomonas fluorescens

  • KIM, YEO-JUNG;NA-RI LEE;SOON-YOUNG CHOI;KYUNG-HEE MIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.172-175
    • /
    • 2002
  • The complete nucleotide sequence of the nahC gene from Pseudomonas fluorescens, the structural gene for 1,2-dihydroxynaphthalene (1,2-DHN) dioxygenase, was determined. The 1,2-DHN dioxygenase is an extradiol ring-cleavage enzyme that cleaves the first ring of 1,2-dihydroxynaphthalene. The amino acid sequence of the dioxygenase deduced from the nucleotide sequence suggested that the holoenzyme consists of eight identical subunits with a molecular weight of approximately 34,200. The amino acid sequence of 1,2-DHN dioxygenase showed more than $90\%$ homology with those of the dioxygenases of other Pseudomonas strains. However, sequence similarity with those of the Sphingomonas species was less than $60\%$. The nahC gene of P. fluorescens was moderately expressed in E. coli NM522, as determined by enzymatic activity.

Promoter Structure Which Affects on the Expression of Yeast MGMT Gene

  • Choe, Soo-Young
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.41-45
    • /
    • 1997
  • The present study was performed to analyze the molecular mechanism which dictates the transcription regulation of the $O^6$-methylguanine-DNA methyltransferase (MGMT) gene in Saccharomyces cerevisiae. Previously we identified one possible upstream repressing sequence (URS) in MGMT promoter by promoter deletion and competition analysis. In this paper we report another regulatory element (UAS: upstream activating sequence. -213 to -136) which affects the transcription activity of MGMT promoter. Gel mobility shift assay and Southwestern blot analysis using UAS probe showed several specific proteins which were able to bind to this sequence.

  • PDF

Screening of cDNAs Encoding Secreted and Membrane Proteins in the Nervous System of Marine Snail Aplysia kurodai

  • Kim, Min-Jeong;Chang, Deok-Jin;Lim, Chae-Seok;Park, Woo-Jin;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • v.7 no.2
    • /
    • pp.133-137
    • /
    • 2003
  • Secreted proteins and membrane proteins play key roles in the formation, differentiation, and maintenance of multicellular organisms. In this study, we undertook to characterize these protein types in the central nervous system of the marine snail Aplysia kurodai using a yeast-based signal sequence trap method. One hundred and three cDNA clones were obtained by screening 300,000 clones from the signal sequence trap cDNA library. Of these, twelve were identical to previously identified Aplysia genes, 19 were related to known proteins in other organisms, and 54 clones were novel. These 54 new genes had high signal peptide scores or were found likely to contain a transmembrane domain sequence. Only 18 of the 103 clones proved to be false positive. The study demonstrates that the signal sequence trap method is an effective tool for Isolating Aplysia genes encoding secreted and membrane proteins.

Molecular Approaches to Taenia asiatica

  • Jeon, Hyeong-Kyu;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Taenia solium, T. saginata, and T. asiatica are taeniid tapeworms that cause taeniasis in humans and cysticercosis in intermediate host animals. Taeniases remain an important public health concerns in the world. Molecular diagnostic methods using PCR assays have been developed for rapid and accurate detection of human infecting taeniid tapeworms, including the use of sequence-specific DNA probes, PCR-RFLP, and multiplex PCR. More recently, DNA diagnosis using PCR based on histopathological specimens such as 10% formalin-fixed paraffin-embedded and stained sections mounted on slides has been applied to cestode infections. The mitochondrial gene sequence is believed to be a very useful molecular marker for not only studying evolutionary relationships among distantly related taxa, but also for investigating the phylo-biogeography of closely related species. The complete sequence of the human Taenia tapeworms mitochondrial genomes were determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The multiplex PCR assay with the Ta4978F, Ts5058F, Tso7421F, and Rev7915 primers will be useful for differential diagnosis, molecular characterization, and epidemiological surveys of human Taenia tapeworms.

Characterization of the Nucleotide Sequence of a Polyubiquitin Gene (PUBC1) from Arabian Camel, Camelus dromedarius

  • Al-Khedhairy, Abdulaziz Ali A.
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.144-147
    • /
    • 2004
  • Molecular amplification and sequencing of genomic DNA that encodes camel polyubiquitin (PUBC1) was performed by a polymerase chain reaction (PCR) using various sets of primers. The amplification generated a number of DNA fragments, which were sequenced and compared with the polyubiquitin coding sequences of various species. One DNA fragment that conformed to 325 bp was found to be 95 and 88% homologous to the sequences of human polyubiquitin B and C, respectively. The DNA translated into 108 amino acids that corresponded to two fused units of ubiquitin with no intervening sequence, which indicates that it is a polyubiquitin and contains at least two units of ubiquitin. Although, variations were found in the nucleotide sequence when compared to those of other species, the amino acid sequence was 100% homologous to the polyubiquitin sequences of humans, mice, and rats. This is the first report of the polyubiquitin DNA coding sequence and its corresponding amino acid sequence from camels, amplified using direct genomic DNA preparations.

Characterization of a Low Molecular Weight Heat-Shock Protein cDNA Clone from Nicotiana tabacum

  • Park, Soo-Min;Joe, Myung-Kuk;Hong, Choo-Bong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.18-18
    • /
    • 1999
  • We characterized a cDNA clone for a low molecular weight heat-shock protein (LMW HSP) from tobacco named TLHS-l. Nucleotide sequence determination of TLHS-1 identified an open reading frame for 159 amino acids. To the upstream of the open reading frame, a sequence of 124 nucleotides was determined. To the 3' downstream of the open reading frame, 212 nucleotides were identified which carried poly(A)-tail. Comparison of the open reading frame and hydropathy plot of TLHS-1 with the previously reported class I LMW HSPs showed high identity which classified TLHS-1 as a class I LMW HSP cDNA clone. We proposed that there are six consensus regions in class I LMW HSPs. RNA blot hybridization for TLHS-1 showed a typical expression pattern of heat-shock-inducible gene from three common tobacco cultivars. The open reading frame of TLHS-1 was overexpressed in Escherichia coli. TLHS-1 protein confers thermal protection of other proteins in vitro and in vivo. Thermal induced aggregation of citrate synthase was reduced by purified TLHS-1 protein, and thermal death rate at $50^{\circ}C$ was reduced in E. coli expressing TLHS-l. From these data, we can expect that TLHS-1 acts as a molecular chaperone.perone.

  • PDF