• Title/Summary/Keyword: Molecular genetic testing

Search Result 91, Processing Time 0.027 seconds

The etiologies of neonatal cholestasis (신생아 담즙정체의 원인질환)

  • Ko, Jae Sung;Seo, Jeong Kee
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.9
    • /
    • pp.835-840
    • /
    • 2007
  • Any infant noted to be jaundiced at 2 weeks of age should be evaluated for cholestasis with measurement of total and direct serum bilirubin. With the insight into the clinical phenotype and the genotype-phenotype correlations, it is now possible to evaluate more precisely the neonate who presents with conjugated hyperbilirubinemia. Testing should be performed for the specific treatable causes of neonatal cholestasis, specifically sepsis, galactosemia, tyrosinemia, citrin deficiency and endocrine disorders. Biliary atresia must be excluded. Low levels of serum gamma-glutamyl transferase in the presence of cholestasis should suggest progressive familial intrahepatic cholestasis type 1, 2, or arthrogryposis- renal dysfunction-cholestasis syndrome. If the serum bile acid level is low, a bile acid synthetic defect should be considered. Molecular genetic testing and molecular-based diagnostic strategies are in evolution.

The molecular pathophysiology of vascular anomalies: Genomic research

  • Kim, Jong Seong;Hwang, Su-Kyeong;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.47 no.3
    • /
    • pp.203-208
    • /
    • 2020
  • Vascular anomalies are congenital localized abnormalities that result from improper development and maintenance of the vasculature. The lesions of vascular anomalies vary in location, type, and clinical severity of the phenotype, and the current treatment options are often unsatisfactory. Most vascular anomalies are sporadic, but patterns of inheritance have been noted in some cases, making genetic analysis relevant. Developments in the field of genomics, including next-generation sequencing, have provided novel insights into the genetic and molecular pathophysiological mechanisms underlying vascular anomalies. These insights may pave the way for new approaches to molecular diagnosis and potential disease-specific therapies. This article provides an introduction to genetic testing for vascular anomalies and presents a brief summary of the etiology and genetics of vascular anomalies.

Biopsy and Mutation Detection Strategies in Non-Small Cell Lung Cancer

  • Jung, Chi Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.5
    • /
    • pp.181-187
    • /
    • 2013
  • The emergence of new therapeutic agents for non-small cell lung cancer (NSCLC) implies that histologic subtyping and molecular predictive testing are now essential for therapeutic decisions. Histologic subtype predicts the efficacy and toxicity of some treatment agents, as do genetic alterations, which can be important predictive factors in treatment selection. Molecular markers, such as epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement, are the best predictors of response to specific tyrosine kinase inhibitor treatment agents. As the majority of patients with NSCLC present with unresectable disease, it is therefore crucial to optimize the use of tissue samples for diagnostic and predictive examinations, particularly for small biopsy and cytology specimens. Therefore, each institution needs to develop a diagnostic approach requiring close communication between the pulmonologist, radiologist, pathologist, and oncologist in order to preserve sufficient biopsy materials for molecular analysis as well as to ensure rapid diagnosis. Currently, personalized medicine in NSCLC is based on the histologic subtype and molecular status. This review summarizes strategies for tissue acquisition, histologic subtyping and molecular analysis for predictive testing in NSCLC.

Hypokalemic periodic paralysis: two different genes responsible for similar clinical manifestations

  • Kim, Hun-Min;Hwang, Hee;Cheong, Hae-Il;Park, Hye-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.11
    • /
    • pp.473-476
    • /
    • 2011
  • Primary hypokalemic periodic paralysis (HOKPP) is an autosomal dominant disorder manifesting as recurrent periodic flaccid paralysis and concomitant hypokalemia. HOKPP is divided into type 1 and type 2 based on the causative gene. Although 2 different ion channels have been identified as the molecular genetic cause of HOKPP, the clinical manifestations between the 2 groups are similar. We report the cases of 2 patients with HOKPP who both presented with typical clinical manifestations, but with mutations in 2 different genes ($CACNA1S$ p.Arg528His and $SCN4A$ p.Arg672His). Despite the similar clinical manifestations, there were differences in the response to acetazolamide treatment between certain genotypes of $SCN4A$ mutations and $CACNA1S$ mutations. We identified p.Arg672His in the $SCN4A$ gene of patient 2 immediately after the first attack through a molecular genetic testing strategy. Molecular genetic diagnosis is important for genetic counseling and selecting preventive treatment.

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVIII)-in vitro Mouse Lymphoma Assay and in vivo Supravital Micronucleus Assay with Butylated Hydroxytoluene (BHT)

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.172-176
    • /
    • 2007
  • Butylated hydroxytoluene (BHT) is widely used antioxidant food additives. It has been extensively studied for potential toxicities. BHT appears adverse effects in liver and thyroid. In this study, we evaluated the genetic toxicity of BHT with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vivo mouse supravital micronucleus (MN) assay. BHT did not appear the significantly results in the absence and presence of metabolic activation system with MLA. Also, in vivo testing of BHT yielded negative results with supravital MN assay. These results suggest that BHT itself was not generally considered genotoxic.

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVII) -In vitro Mouse Lymphoma Assay and In vitro Supravital Micronucleus Assay with 1, 2-Dichlorobenzene

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.113-118
    • /
    • 2007
  • Chlorobenzenes due to their acute toxicity and the capability of bioaccumulating are of great health and environmental concern. Especially, 1, 2-dichlorobenzene (CAS No. 95-50-1) is used for organic synthesis, dye manufacture, as a solvent and for other applications in chemical industry. Adverse effects of 1, 2-dichlorobenzene includes increases in liver and kidney weights and hepatotoxicity. In this study, we evaluated the genetic toxicity of 1, 2-dichlorobenzene with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vitro mouse supravital micronucleus (MN) assay. 1, 2-Dichlorobenzene appeared the significantly positive results and the induction of large mutant colonies only in the presence of metabolic activation system with MLA. But in vitro testing of 1, 2-dichlorobenzene yielded negative results with supravital MN assay. These results suggest that 1, 2-dichlorobenzene may play a mutagen rather than clastogen in vitro mammalian system.

Clinical and Genetic Features of Korean Inherited Arrhythmia Probands

  • Joo Hee Jeong;Suk-Kyu Oh;Yun Gi Kim;Yun Young Choi;Hyoung Seok Lee;Jaemin Shim;Yae Min Park;Jun-Hyung Kim;Yong-Seog Oh;Nam-Ho Kim;Hui-Nam Pak;Young Keun On;Hyung Wook Park;Gyo-Seung Hwang;Dae-Kyeong Kim;Young-Ah Park;Hyoung-Seob Park;Yongkeun Cho;Seil Oh;Jong-Il Choi;Young-Hoon Kim
    • Korean Circulation Journal
    • /
    • v.53 no.10
    • /
    • pp.693-707
    • /
    • 2023
  • Background and Objectives: Inherited arrhythmia (IA) is a more common cause of sudden cardiac death in Asian population, but little is known about the genetic background of Asian IA probands. We aimed to investigate the clinical characteristics and analyze the genetic underpinnings of IA in a Korean cohort. Methods: This study was conducted in a multicenter cohort of the Korean IA Registry from 2014 to 2017. Genetic testing was performed using a next-generation sequencing panel including 174 causative genes of cardiovascular disease. Results: Among the 265 IA probands, idiopathic ventricular fibrillation (IVF) and Brugada Syndrome (BrS) was the most prevalent diseases (96 and 95 cases respectively), followed by long QT syndrome (LQTS, n=54). Two-hundred-sixteen probands underwent genetic testing, and 69 probands (31.9%) were detected with genetic variant, with yield of pathogenic or likely pathogenic variant as 6.4%. Left ventricular ejection fraction was significantly lower in genotype positive probands (54.7±11.3 vs. 59.3±9.2%, p=0.005). IVF probands showed highest yield of positive genotype (54.0%), followed by LQTS (23.8%), and BrS (19.5%). Conclusions: There were significant differences in clinical characteristics and genetic yields among BrS, LQTS, and IVF. Genetic testing did not provide better yield for BrS and LQTS. On the other hand, in IVF, genetic testing using multiple gene panel might enable the molecular diagnosis of concealed genotype, which may alter future clinical diagnosis and management strategies.

Clinical Experiences of Molecular Genetic Evaluation of Achondroplasia in Prenatal and Neonatal Cases

  • Kwak, Dong Wook;Kim, Hyun Jin;Park, So Yeon;Ahn, Hyun Suk;Chae, Yong Hwa;Kim, Moon Young;Lee, Young Ho;Ryu, Hyun Mee
    • Journal of Genetic Medicine
    • /
    • v.10 no.1
    • /
    • pp.38-42
    • /
    • 2013
  • Purpose: The purpose of this study was to assess the characteristics of achondroplasia (ACH) diagnosed in fetuses or neonates and to evaluate the usefulness of a molecular genetic testing to confirm ACH. Materials and Methods: The medical and ultrasonographic records of 16 pregnant women, who had molecular genetic testing for ACH performed on their fetus or neonate at the Cheil General Hospital between February 1999 and April 2013, were retrospectively analyzed. Detection of G1138A and G1138C mutations of the fibroblast growth factor receptor 3 (FGFR3) gene was accomplished by polymerase chain reaction - restriction fragment length polymorphism analysis. Results: Of the eight fetuses and two neonates who were suspected of having ACH during pregnancy, four fetuses and one neonate was confirmed to have ACH and they all carried the heterozygous G1138A mutation. Out of 6 cases which had a history of ACH in prior pregnancies, three had genetic information for the previous fetuses while the other three did not. All six fetuses had no mutations at G380R. However, the one fetus of pregnant woman with non-confirmed ACH showed shortened long bone on ultrasound thereafter and the fetus was identified as having oto-spondylo-megaepiphyseal dysplasia after birth. Conclusion: Korean patients with achondroplasia have the heterozygous G1138A mutation that is most commonly defined in other countries. Molecular genetic evaluations of ACH are helpful not only for establishing diagnosis but for appropriate counseling with subsequent pregnancies.

Genetic Basis of Early-onset Developmental and Epileptic Encephalopathies

  • Hwang, Su-Kyeong
    • Journal of Interdisciplinary Genomics
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • Developmental and epileptic encephalopathies are the most devastating early-onset epilepsies, characterized by early-onset seizures that are often intractable, electroencephalographic abnormalities, developmental delay or regression, and various comorbidities. A large number of underlying genetic variants of developmental and epileptic encephalopathies have been identified over the past few decades. However, the most thorough sequencing studies leave 60-65% of patients without a molecular diagnosis. This review explores the genetic basis of developmental and epileptic encephalopathies that start within the first year of life, including Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, infantile spasms, and Dravet syndrome. The purpose of this review is to give an overview and encourage the clinicians to start considering genetic testing as an important investigation along with electroencephalogram for better understanding and management of developmental and epileptic encephalopathies.

A novel variant of PHEX in a Korean family with X-linked hypophosphatemic rickets

  • Kim, Sejin;Kim, Sungsoo;Kim, Namhee
    • Journal of Genetic Medicine
    • /
    • v.19 no.1
    • /
    • pp.27-31
    • /
    • 2022
  • X-linked dominant hypophosphatemic rickets are the most common form of familial hypophosphatemic rickets resulting from hypophosphatemia caused by renal phosphate wasting, which in turn is a result of loss-of-function mutations in PHEX. Herein, we report a 39-year-old female with short stature and skeletal deformities and 12-month-old asymptomatic daughter. The female has a history of multiple surgical treatments because of lower limb deformities. Her biochemical findings revealed low serum phosphorus levels with elevated serum alkaline phosphatase activity and normal serum calcium levels, suggesting presence of hypophosphatemic rickets. To identify the molecular causes, we used a multigene testing panel and found a mutation, c.667dup (p.Asp223GlyfsTer15), in PHEX gene. To the best of our knowledge, this is a novel mutation. A heterozygous form of the same variant was detected in daughter, who showed no typical symptoms such as bow legs, frontal bossing, or waddling gate, but presented early signs of impaired mineralization in both X-ray and biochemical findings. The daughter was initiated onto early medical treatment with oral phosphate supplementation and an active vitamin D analog. Because the daughter was genetically diagnosed based on a family history before the onset of symptoms, appropriate medical management was possible from early infancy.