• Title/Summary/Keyword: Molecular electrostatic potential (MEP)

Search Result 5, Processing Time 0.017 seconds

Experimental and Computational Approaches to the Molecular Structure of 3-(2-Mercaptopyridine)phthalonitrile

  • Tanak, Hasan;Koysal, Yavuz;Isik, Samil;Yaman, Hanifi;Ahsen, Vefa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.673-680
    • /
    • 2011
  • The compound 3-(2-Mercaptopyridine)phthalonitrile has been synthesized and characterized by IR, UV-vis, and X-ray single-crystal determination. The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31G(d) basis set. The calculated results show that the DFT and HF can well reproduce the structure of the title compound. The energetic behavior of the title compound in solvent media was examined using the B3LYP method with the 6-31G(d) basis set by applying the Onsager and polarizable continuum model. Using the TD-DFT and TD-HF methods, electronic absorption spectra of the title compound have been predicted and good agreement with the TD-DFT method and the experimental determination was found. The predicted nonlinear optical properties of the title compound are much greater than those of urea. Besides, molecular electrostatic potential of the title compound were investigated by theoretical calculations. The thermodynamic properties of the compound at different temperatures have been calculated and corresponding relations between the properties and temperature have also been obtained.

Ab Initio Studies on Proton Affinities of Substituted Thiazoles (치환 티아졸의 양성자 친화도에 대한 Ab Initio 연구)

  • Lee, Gap Yong;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Molecular electrostatic potential (MEP) of the thiazole, relevant to the binding of lexitroposin that contains thiazole ring to the base pair of minor groove of DNA is obtained from the results of ab initio calculation. The geometry optimization for the two possible conformations of protonated thiazoles is performed with the aid of MNDO and ab initio calculations. The proton affinities are calculated at the 6-31G and 6-31G basis set for the optimized geometry. The proton affinities are also studied for various substituted thiazoles with the electron-donating and electron-withdrawing groups to estimate substituent effect on the proton affinity of thiazoles. It is found that the thiazole with nitrogen atom aligned inward to the DNA minor groove exhibit higher proton affinity and electron-donating substituents increase the proton affinity of thiazoles.ĀȀꃏ?⨀缾ĀȀ會ĀȀ?⨀ꖓĀĀȀ會ĀȀ僐?⨀聥ꖓĀĀȀ會ĀȀ꣐?⨀聐缾ĀȀ會ĀȀÑ?⨀ၑ缾ĀȀ會ĀȀ壑?⨀ꁑ缾ᨀĀꀏ會Āꀏ냑?⨀⡒缾᐀Āꀏ會Āꀏ࣒?⨀끒缾ᰀĀꀏ會Āꀏ惒?⨀ꁩꖓȀĀꀏ會Āꀏ룒?⨀⡪ꖓሀĀꀏ會Āꀏდ?⨀ᤐ돀삺?⨀塨?⨀飣?⨀돐룣?⨀偠잖⨀샣?⨀줏덐탣?⨀젏ꠏܞȌ蠀ᥲ⴯ͧMolecua及컲ࡔȏᰗۊऀںMolecular electrostatic potential (MEP) of the thiazole, relevant to the binding of lexitroposin that contains thiazole ring to the base pair of minor groove of DNA is obtained from the results of ab initio calculation. The geometry optimization for the two possible conformations of protonated thiazoles

  • PDF

N-phenyl Substitutent Effect on the Herbicidal Activity of 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide Derivatives against Rice Plant with Pre- and Post-emergence (발아 전 후 벼의 약해에 미치는 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide 유도체들 중 N-phenyl치환기의 효과)

  • Lee, Sang-Ho;Ryu, Jae-Wook;Woo, Jae-Chun;Koo, Dong-Whan;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.52-56
    • /
    • 2000
  • The influence of the 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenyl- propionamide derivatives on the herbicide activities against rice plant with pre-emergence and post-emergence in down land were examined and the structure activity relationship (SAR) were analyzed by Free-Wilson and Hansch method. In pre-emergence, the SAR approach is shown that the optimal, $({\pi})_{opt}=0.91$, hydrophobicity with electron donating effect of the ortho substituted mono substituents and 2,3,4-substituted three substituents were found to be contribute the herbicidal activity. Whereas, in post-emergence, the optimal, ({\pi})_{opt}=0.50$, hydrophobicity with electron withdrawing effect of meta substituted mono subsituents and 2,3-substituted two substituents were found to be contribute the herbicide activity. The herbicide activities with post-emergence more increase than that of pre-emergence. It is assumed from the SAR equations that the 2-methyl-3-methoxy-4-cyano group substituent is selected as the most lowest herbicide activity against rice plant with post-emergence in green house. The hydrolysis reaction was proceeded through nucleophilic addition-elimination (Ad_{Nu-E})$ with the orbital control between LUMO of substrate and HOMO of water molecule. And molecular electrostatic potential (MEP) of none (H) substituent was discussed.

  • PDF

Crystal Structure and Tautomerism Study of the Mono-protonated Metformin Salt

  • Wei, Xiaodan;Fan, Yuhua;Bi, Caifeng;Yan, Xingchen;Zhang, Xia;Li, Xin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3495-3501
    • /
    • 2014
  • A novel crystal, the mono-protonated metformin acetate (1), was obtained and characterized by elemental analysis, IR spectroscopy and X-ray crystallography. It was found that one of the imino group in the metformin cation was protonated along with the proton transfer from the secondary amino group to the other imino group. Its crystal structure was then compared with the previously reported diprotonated metformin oxalate (2). The difference between them is that the mono-protonated metformin cations can be linked by hydrogen bonding to form dimers while the diprotonated metformin cations cannot. Both of them are stabilized by intermolecular hydrogen bonds to assemble a 3-D supermolecular structure. The four potential tautomer of the mono-protonated metformin cation (tautomers 1a, 1b, 1c and 1d) were optimized and their single point energies were calculated by Density Functional Theory (DFT) B3LYP method based on the Polarized Continuum Model (PCM) in water, which shows that the most likely existed tautomer in human cells is the same in the crystal structure. Based on the optimized structure, their Wiberg bond orders, Natural Population Analysis (NPA) atomic charges, molecular electrostatic potential (MEP) maps were calculated to analyze their electronic structures, which were then compared with the corresponding values of the diprotonated metformin cation (cation 2) and the neutral metformin (compound 3). Finally, the possible tautomeric mechanism of the mono-protonated metformin cation was discussed based on the observed phenomena.

DFT Studies on the Proton Affinities of Oxazole (옥사졸의 양성자 친화도에 대한 DFT 연구)

  • Lee, Hyun-Mee;Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • The oxazole plays an important role in the binding of lexitropsin to the guanine-cytosine base pair from minor groove of DNA. The geometry optimization is performed with DFT calculations for the two possible conformations of the protonated oxazole. The proton affinities are calculated at B3LYP level of theory with 6-31G* basis set for the optimized geometry. It is found that the proton affinites of the conformations in which the oxazole nitrogen is the protonation center are greater than that of the conformations in which the oxazole oxygen is the protonation center. This result is in good agreement with molecular electrostatic potential (MEP) contour map. The proton affinities are also studied for various substituted oxazoles with the electron-donating and -withdrawing groups to estimate substitutent effect on the proton affinity at the hydrogen bonding site of the oxazoles. it is shown that the electron-donating substituents increase the proton affinity of oxazole, while the electron-withdrawing substituents decrease it.