• Title/Summary/Keyword: Molecular drag pump

Search Result 21, Processing Time 0.035 seconds

An Expreimental Study on the Pumping Performance of Various Turbo-Type Drag Pumps (터보형 드래그펌프의 배기특성에 관한 실험적 연구)

  • Hwang, Y.K.;Heo, J.S.;Choi, W.J.;Kwon, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.555-560
    • /
    • 2000
  • An experimental study on pumping characteristics of various turbo-type drag pumps is purformed. The inlet pressures are measured for various outlet pressures of the test pump. The maximum compression ratios for nitrogen are 100,000(Disk-type drag pump+ turbo molecular pump), 10000(Helical-type drag pump+turbo molecular pump), 850 (Helical-type drag pump), 100(disk-type drag pump).

  • PDF

The Measurement of Vacuum Pressure for the Rotors of Disk-type Molecular drag Pumps (원판형 분자 드래그펌프 회전자에 대한 압력 측정)

  • Kwon, Myoung-Keun;Kim, Do-Haeng;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2725-2730
    • /
    • 2007
  • Turbo-type molecular drag pumps ( MDPs ) are used in the liquid crystal display ( LCD ), semiconductor and other thin film industries. Siegbahn ( disk-type ) molecular drag pumps are used as high-pressure stages in the hybrid-type turbomolecular pumps, where they can operate in the viscous, the transition and the free molecular flow regime. In this study is performed to investigate the pumping characteristics of three-stage disk-type molecular drag pump ( DTDP ) in the molecular transition flow region. The experiments are measured using five vacuum pressure gauges in the positions for rotors of DTDP. The test is performed with nitrogen gas ( $N_2$ ).

  • PDF

An Experimental Study on the Pumping Performance of Molecular Drag Pumps

  • Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1483-1491
    • /
    • 2006
  • The pumping performance of molecular drag pumps (MDP) has been investigated experimentally. The exporimented MDPs are a disk-type drag pump (DTDP), helical-type drag pump(HTDP) and compound drag pump (CDP), respectively In the case of the DTDP, spiral channels of a rotor are cut on both upper surface and lower surface of a rotating disk, and the corresponding stator is a planar disk. In the case of the HTDP, the rotor has six rectangular grooves. The CDP consists with the DTDP, at lower part, and with the HTDP, at upper part. The experiments are performed in the outlet pressure range of $0.2{\sim}533Pa$. The inlet pressure and compression ratio are measured under the various conditions of outlet pressure and throughputs, and nitrogen is used for the test gas. At the outlet pressure of 0.2Pa, the ultimate pressure has been reached to $1.0{\times}10^{-2}Pa$ for the HTDP, $1.3{\times}10^{-4}Pa$ for the DTDP, and $3.6{\times}10^{-5}Pa$ for the CDP. The maximum compression ratio of the CDP is much higher than those of the DTDP or HTDP. Consequently, the ultimate pressure of the CDP is the lowest one.

A Study on the Pumping Performance of a Helical-type Molecular Drag Pump (헬리컬형 분자 드래그 펌프의 유동특성에 관한 연구)

  • Kim, Do-Haeng;Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2723-2728
    • /
    • 2008
  • The present study is numerically and experimentally performed to reveal the pumping characteristics of a helical-type molecular drag pump (HTDP) in the molecular transition flow region. In the experimental study, the pressures are measured simultaneously at the 5 positions along the helical channel of rotor under various conditions of outlet pressure and throughputs, and nitrogen is used as test gas. The outlet pressure is in the range of 26-533 Pa. As results, the local pressure changes are checked corresponding to the various outlet pressure and throughput of HTDP. In the numerical study, Navier-Stokes equations with slip boundary conditions are employed (Re< 1000, Kn< 0.1). The local pressure distribution and the pumping speed are calculated. The numerical results are compared with the experimental results. The numerically computed value agrees with the experimental data within an error of approximately 5%.

  • PDF

An Experimental Study on the Pumping Performance of the Turbo-Type Disk-Type Drag Pump (터보형 원판형 드래그펌프의 배기특성에 관한 실험적 연구)

  • Hwang Young-Kyu;Heo Joong-Sik;Kwon Myung-Keun;Lee Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.577-580
    • /
    • 2002
  • In this paper, the pumping performance of the disk-type drag pump which works in the outlet pressure range from 4 to 0.001 Torr is studied experimentally. The pumping characteristics of various drag pumps are performed. The inlet pressures are measured for various outlet pressures of the test pump. The flow-meter method is adopted to calculate the pumping speed. Compression ratios and pumping speeds for the nitrogen gas are measured. The present experimental data show the leak-limited value of the compression ratio in the molecular transition region. The rotational speed of the pump is 24,000rpm. The inlet pressures are measured for various outlet pressures of the test pump. The ultimate Pressures for zero throughput are measured for three-stage, two-stage and single-stage disk-type, respectively.

  • PDF

분자 드래그 회전자 형상에 따른 복합분자펌프의 배기성능에 관한 실험적 연구

  • Hwang Yeong-Gyu;Gwon Myeong-Geun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.202-205
    • /
    • 2006
  • Recently, high vacuum pumps are widely used in the semi-conduction and liquid-crystal display ( LCD ) process. The composite-type high vacuum pumps are widely used in the various processes. In this study, the pumping performance of composite-type molecular pumps has been investigated experimentally. The experimented pumps are a compound molecular pump ( CMP ) and hybrid molecular pump ( HMP ). The CMP consists with helical-type drag pump, at lower part, and with turbomolecular pump ( TMP ), at upper part. The HMP consists with disk-type drag pump, at lower part, and with TMP, at upper part. The experiments are performed in the outlet pressure of $0.2\;{\sim}\;533\;Pa$. We have measured the ultimate pressure, compression ratio, and pumping speed

  • PDF

A Study on the Pumping Performance of a Disk-type Drag Pump (원판형 드래그펌프의 배기특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik;Choi, Wook-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.860-869
    • /
    • 2000
  • Numerical and experimental investigations are performed for the molecular transition and slip flows in pumping channels of a disk-type drag pump. The flow occurring in the pumping channel develops from the molecular transition to the slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic approach through the use of the direct simulation Monte Carlo method. In the experimental study, the inlet pressures are measured for various outlet pressures in the range of 0.1{\sim}4Torr. From the present study, the numerical results of predicting the performance, obtained by both methods, agree well with the experimental data for the range of Knudsen number $Kn{\leq}0.1$ (i.e., the slip flow regime). But the results from the second method only agree with the experimental data for Kn>0.1(i.e., the molecular transition regime)

A Study on the Performance Characteristics of a Disk-type Drag Pump (원판형 드래그펌프의 성능특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.643-648
    • /
    • 2001
  • The direct simulation Monte Carlo(DSMC) method is applied to investigate steady and unsteady flow fields of a single-stage disk-type drag pump. Two different kinds of pumps are considered: the first one is a rotor-rotor combination, and the second one is a rotor-stator combination. The pumping channels are cut on a rotor and stator. The rotor and stator have 10 Archimedes' spiral blades, respectively. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies. The DSMC results are in good agreement with the experimental data.

  • PDF

Effect of Clearance between a Rotor and Stator of a Disk-Type Drag Pump on the Pumping Performance (고속 회전하는 원판형 드래그펌프 회전익과 고정익 사이 간극이 배기 성능에 미치는 영향)

  • Kwon, Myoung-Keun;Lee, Soo-Yong;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1640-1645
    • /
    • 2004
  • The pumping characteristics of a single-stage disk-type drag pump ( DTDP ) are calculated,for the variation of the vertical clearance between a rotor and stator and of the radial clearance between a rotor and casing wall, by the three-dimensional direct simulation Monte Carlo (DSMC)method. The gas flow mainly belongs to the molecular transition flow region. Spiral channels of a DTDP are cut on the both the upper and lower sides of a rotating disk, but the stationary disks are planar. As a consequence of results, the vertical and radial clearances have a significant effect on the pumping performance. Experiments are performed under the outlet pressure range of 0.4 $^{\sim}$ 533 Pa. When the numerical results are compared to the experimental data, the numerical results agree well qualitatively.

  • PDF