• Title/Summary/Keyword: Molecular diversity

Search Result 885, Processing Time 0.03 seconds

Two Maternal Lineages Revealed by Mitochondrial DNA D-loop Sequences in Chinese Native Water Buffaloes (Bubalus bubalis)

  • Lei, Chu-Zhao;Zhang, Wei;Chen, Hong;Lu, Fan;Ge, Qing-Lan;Liu, Ruo-Yu;Dang, Rui-Hua;Yao, Yun-Yi;Yao, Li-Bo;Lu, Zi-Fan;Zhao, Zhong-liang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.471-476
    • /
    • 2007
  • Little is known about the origin and genetic diversity of swamp buffaloes in China. To obtain more knowledge on genetics of the water buffalo in China, the complete mitochondrial D-loop sequences of 30 samples from 6 native types were investigated. The results revealed 12 mitochondrial haplotypes with 50 polymorphic sites. Among these polymorphic sites, there were 49 transitions and 1 transversion. The average nucleotide diversity and haplotype diversity estimated from mtDNA D-loop region in 6 Chinese water buffalo types were 0.00684 and 0.798, respectively, showing rather abundant mitochondrial genetic diversity. The Neighbor-Joining (NJ) tree of mtDNA of Chinese water buffaloes was constructed according to the 12 haplotypes. The NJ tree indicated two lineages being designated lineage A and lineage B, in which lineage A was predominant, and lineage B was at low frequency. The new lineage B was first discovered and defined in 6 Chinese water buffalo types. These results showed that two different maternal lineages were involved in the origin of domestic swamp buffaloes in China and the lineage B was probably an introgression from Southeast Asian buffaloes.

Use of Cattle Microsatellite Markers to Assess Genetic Diversity of Thai Swamp Buffalo (Bubalus bubalis)

  • Sraphet, Supajit;Moolmuang, Benchamart;Na-Chiangmai, Ancharlie;Panyim, Sakol;Smith, Duncan R.;Triwitayakorn, Kanokporn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.177-180
    • /
    • 2008
  • In this study, cattle microsatellite markers recommended for diversity studies of cattle by the EU AIRE 2066 Concerted Action Group were used to study the genetic diversity of 105 Thai swamp buffalo which were randomly selected from eight different research stations of the Department of Livestock Development, Thailand. Of 34 primer pairs, 16 were successfully amplified while the rest showed non-specific amplification. The lowest number of alleles was two while the highest was nine, with an average of 4.7 alleles per locus. The average unbiased heterozygosity for all eight populations was 0.5233, with a low of 0.4772 (Samui) and a high of 0.5616 (Burirum). The genetic distance ranged from 0.0574 to 0.2575. Populations from Lopburi and Burirum showed the closest relationship, whereas Srisagat and Samui were the most divergent. The results generated with the primers recommended by the EU AIRE 2066 Concerted Action Group are at a slight variance from our previous study, possibly as a result of the number of specific amplification products obtained, suggesting that cattle markers may not be optimal for studies of the genetic diversity of the Thai swamp buffalo.

The Genetic Diversity of Seven Pig Breeds in China, Estimated by Means of Microsatellites

  • Li, X.;Li, K.;Fan, B.;Gong, Y.;Zhao, S.;Peng, Z.;Liu, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1193-1195
    • /
    • 2000
  • The polymorphisms of six microsatellites were investigated in four indigenous pig breeds (Erhualian, Tongcheng, Qingping and Wannanhua) and three introduced breeds (Large White, Landrace and Duroc) in China, and the genetic variations within and among populations were analyzed. The results showed that genetic diversity of Chinese indigenous pig breeds is higher than that of the introduced pig breeds. The clustering of seven breeds is consistent with their geographical distribution approximately. Estimated time of breed divergence ranged from 653 to 1856 years.

Diversity of Chinese Indigenous Goat Breeds: A Conservation Perspective - A Review -

  • Li, M.H.;Li, K.;Zhao, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.726-732
    • /
    • 2004
  • In this manuscript, a review of the diversity of Chinese indigenous goat breeds according to data from body stature and appearance, chromosome group, blood proteins, DNA molecular markers (mitochondria DNA, random amplified polymorphic DNA, microsatellite DNA, major histocompatibility complex) has been introduced. All of these provide efficient tools for the diversity analysis of Chinese indigenous goat breeds and are very important for biodiversity conservation, restoration of declining goat breeds, the priority defining in Chinese indigenous goat breeds' protection and the selection of nature preservation zones. Many Chinese indigenous goat breeds with small population size in the isolated mountains or reservoir areas are verging the potential threat of extinction, effectively lost with the rapid destroying of ecological environment. On the other hand, as a result of the introduction of modern commercial goat breeds and shortage of effective conservation, some populations, such as Small-xiang goat and Tibetan goat decrease rapidly in number of sires. In the interests of the long-term future of the goat breeds in China, conservation of goat breeds' genetic resources should be considered urgently and some conservation measures should be adopted. In addition, the continuing development of molecular biology will further enhance conservation of diversity of Chinese indigenous goat breeds.

Genetic Diversity Analysis of Maintaining Lines for Kenyan Sunflower (Helianthus annus L.) Using Allele Specific SSR Markers

  • Mwangi, Esther W.;Lee, Myung-Chul;Sung, Jung Suk;Marzougui, Salem;Bwalya, Ernest C.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.61-61
    • /
    • 2019
  • In any crop breeding program Selection and use of genetically diverse genotypes to develop cultivars with a broad genetic base is important. Molecular markers play a major role in selecting diverse genotypes. Molecular breeding programs of the crop can be made more efficient by use of molecular markers. The present study was done with an aim of analyzing genetic diversity and the population structure in 24 accessions of sunflower (Helianthus annus L.) from Kenya genetic diversity using 35 EST-SSR and gSSR primers.Out of the 35 markers 3 were not polymorphic as they indicated Polymorphic Information content( PIC) of value 0.00 and so the data analysis was done using 32 markers . The 32 set of markers used produced 29 alleles ranging from 2 to 7with a mean of 3.0 alleles per locus.The average value of polymorphic information contents(PIC) were 0.3 .Genetic diversity analysis using these markers revealed 3 major clusters. This result could be useful for designing strategies to make elite hybrid and inbreeding of crossing block for breeding and future molecular breeding programs to make elite variety.

  • PDF

Cryptic variation, molecular data, and the challenge of conserving plant diversity in oceanic archipelagos: the critical role of plant systematics

  • Crawford, Daniel J.;Stuessy, Tod F.
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.129-148
    • /
    • 2016
  • Plant species on oceanic islands comprise nearly 25% of described vascular plants on only 5% of the Earth's land surface yet are among the most rare and endangered plants. Conservation of plant biodiversity on islands poses particular challenges because many species occur in a few and/or small populations, and their habitats on islands are often disturbed by the activity of humans or by natural processes such as landslides and volcanoes. In addition to described species, evidence is accumulating that there are likely significant numbers of "cryptic" species in oceanic archipelagos. Plant systematists, in collaboration with others in the botanical disciplines, are critical to the discovery of the subtle diversity in oceanic island floras. Molecular data will play an ever increasing role in revealing variation in island lineages. However, the input from plant systematists and other organismal biologists will continue to be important in calling attention to morphological and ecological variation in natural populations and in the discovery of "new" populations that can inform sampling for molecular analyses. Conversely, organismal biologists can provide basic information necessary for understanding the biology of the molecular variants, including diagnostic morphological characters, reproductive biology, habitat, etc. Such basic information is important when describing new species and arguing for their protection. Hybridization presents one of the most challenging problems in the conservation of insular plant diversity, with the process having the potential to decrease diversity in several ways including the merging of species into hybrid swarms or conversely hybridization may generate stable novel recombinants that merit recognition as new species. These processes are often operative in recent radiations in which intrinsic barriers to gene flow have not evolved. The knowledge and continued monitoring of plant populations in the dynamic landscapes on oceanic islands are critical to the preservation of their plant diversity.

Sequence Diversity of a Domesticated Transposase Gene, MUG1, in Oryza Species

  • Kwon, Soon-Jae;Park, Kyong-Cheul;Son, Jae-Han;Bureau, Thomas;Park, Cheul-Ho;Kim, Nam-Soo
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.459-465
    • /
    • 2009
  • MUG1 is a MULE transposon-related domesticated gene in plants. We assessed the sequence diversity, neutrality, expression, and phylogenetics of the MUG1 gene among Oryza ssp. We found MUG1 expression in all tissues analyzed, with different levels in O. sativa. There were 408 variation sites in the 3886 bp of MUG1 locus. The nucleotide diversity of the MUG1 was higher than functionally known genes in rice. The nucleotide diversity (${\pi}$) in the domains was lower than the average nucleotide diversity in whole coding region. The ${\pi}$ values in nonsynonymous sites were lower than those of synonymous sites. Tajima D and Fu and Li $D^*$ values were mostly negative values, suggesting purifying selection in MUG1 sequences of Oryza ssp. Genome-specific variation and phylogenetic analyses show a general grouping of MUG1 sequences congruent with Oryza ssp. biogeography; however, our MUG1 phylogenetic results, in combination with separate B and D genome studies, might suggest an early divergence of the Oryza ssp. by continental drift of Gondwanaland. O. long-istaminata MUG1 divergence from other AA diploids suggests that it might not be a direct ancestor of the African rice species.

Genetic diversity analysis in Chinese miniature pigs using swine leukocyte antigen complex microsatellites

  • Wu, Jinhua;Liu, Ronghui;Li, Hua;Yu, Hui;Yang, Yalan
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1757-1765
    • /
    • 2021
  • Objective: The swine leukocyte antigen (SLA) gene group, which is closely linked and highly polymorphic, has important biomedical significance in the protection and utilization of germplasm resources. However, genetic polymorphism analyses of SLA microsatellite markers in Chinese miniature pigs are limited. Methods: Eighteen pairs of microsatellite primers were used to amplify the SLA regions of seven miniature pig breeds and three wild boar breeds (n = 346) from different regions of China. The indexes of genetic polymorphism, including expected heterozygosity (He), polymorphic information content (PIC), and haplotype, were analyzed. The genetic differentiation coefficient (Fst) and neighbor-joining methods were used for cluster analysis of the breeds. Results: In miniature pigs, the SLA I region had the highest numbers of polymorphisms, followed by the SLA II and SLA III regions; the region near the centromere had the lowest number of polymorphisms. Among the seven miniature pig breeds, Diannan small-ear pigs had the highest genetic diversity (PIC value = 0.6396), whereas the genetic diversity of the Hebao pig was the lowest (PIC value = 0.4330). The Fst values in the Mingguang small-ear, Diannan small-ear, and Yunnan wild boars were less than 0.05. According to phylogenetic cluster analysis, the South-China-type miniature pigs clustered into one group, among which Mingguang small-ear pigs clustered with Diannan small-ear pigs. Haplotype analysis revealed that the SLA I, II, and III regions could be constructed into 13, 7, and 11 common haplotypes, respectively. Conclusion: This study validates the high genetic diversity of the Chinese miniature pig. Mingguang small-ear pigs have close kinship with Diannan small-ear pigs, implying that they may have similar genetic backgrounds and originate from the same population. This study also provides a foundation for genetic breeding, genetic resource protection, and classification of Chinese miniature pigs.

Genetic Diversity and Population Structure of Pseudobagrus fulvidraco in the Nakdong River (낙동강에 분포하는 동자개 집단의 유전적 다양성과 집단구조)

  • Huh, Man-Kyu;Choi, Joo-Soo;Heo, Youn-Seong;Lee, Bok-Kyu
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.882-888
    • /
    • 2007
  • Enzyme electrophoresis was used to estimate genetic diversity and population genetic structure of Pseudobagrus fulvidraco in Korea. Nine of the 14 loci (64.3%) showed detectable polymorphism. Genetic diversity at the population and species levels were 0.286 and 0.277, respectively. Analysis of fixation indices, calculated for all polymorphic loci in each population, showed a substantial deficit of hetero-zygotes relative to Hardy-Weinberg expectations. This deficit is expected that it is due to a limited effective number of individuals per population. The average $G_{ST}$ for polymorphic loci was 0.064, indicating that most (93.6%) of the genetic diversity occurred within populations. The indirect estimate of gene flow based on mean $G_{ST}$ was 3.67. Given limited gene flow is expected to diverge genetically due to drift and reduced populations. Most populations in our study experience annual, severe demo-graphic bottlenecks due to drought and floods.