• Title/Summary/Keyword: Molecular cleft

Search Result 24, Processing Time 0.02 seconds

Gene Targeting Mouse Genetic Models for Cleft Lip and Palate (구순구개열 발생의 분자유전학 연구를 위한 유전자 표적/적중 생쥐모델의 이용)

  • Baek, Jin-A
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.11 no.2
    • /
    • pp.65-70
    • /
    • 2008
  • Cleft lip and/or palate are common birth defects in humans and the causes including multiple genetic and environmental factors are complex. Combinations of genetic, biochemical, and embryological approaches in the laboratory mice are used to investigate the molecular mechanisms underlying normal craniofacial development and the congenital craniofacial malformations including cleft lip and/or palate. Both forward and reverse genetic approaches are used. The forward genetic approach involves identification of causative genes and molecular pathways disrupted by uncharacterized mutations that cause craniofacial malformations including cleft lip and/or cleft palate. The reverse genetic approach involves generation and analyses of mice carrying null or conditional mutations using the Cre-loxP mediated gene targeting techniques.

  • PDF

A STUDY OF $TGF-{\beta}$ EXPRESSION DURING PALATOGENESIS IN RATS WITH CLEFT PALATE INDUCED BY BAPN (($TGF-{\beta}$ 발현이 BAPN으로 유도된 구개열 백서의 구개 형성에 미치는 영향에 대한 실험적 연구)

  • Tae, Ki-Chul;Lee, Dong-Kun;Kim, Jeng-Ghee
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.3
    • /
    • pp.205-211
    • /
    • 2001
  • Cleft palate is one of the most serious congenital anomalies in human that causes a sucking problem in newborn babies and morphologic deformity that usually leads to death in newborn mouse offspring due to an insufficient ability to suck milk. Therefore cleft palate had been researched with epidemiologic and molecular methods, and many etiologic factors were examined closely. Among of the research methods, biologic molecule researches have been more important method for cleft palate formation study. The $TGF-{\beta}$ had an important role in the cell migration, epithelial-mesenchymal transdifferentiation, extracellular matrix synthesis and deposition. But there was a little research which was study about correlation cleft palate induced by beta-aminonitroproprionitrile(BAPN) with $TGF-{\beta}$ expression. A purpose of this presented study was examed how $TGF-{\beta}$ expression in cleft palate mice. At gestation days 13, BAPN-monofumarate salts($(C_3H_6N_2)_2$ ${\cdot}$ $C_4H_4O_4$, Sigma Co.) was single oral administered to 4 pregnant rats according to 1g/kg body weight. And pregnant rats were sacrificed on day 20 post coitus(p.c.), The $TGF-{\beta}$ expression patterns of cleft formed fetus mice was followed that; 1.Osteoblast, mesenchymal cell and epithelial cell of cleft mice were low expression compare to control mice. 2.There was no $TGF-{\beta}$ difference expression pattern of osteocyte of cleft mice compare to control mice. 3. In western blot analysis, thickness of band of $TGF-{\beta}$ in cleft mice was thin and dilute compare to control mice.

  • PDF

Development of the Upper Lip -review- (상순의 발생 -review-)

  • Ko, Seung-O;Im, Yang-Hee;Kim, Ki-Byeung;Shin, Hyo-Keun
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • The vertebrate upper lip forms from initially freely projecting maxillary, medial nasal, and lateral nasal prominences at the rostral and lateral boundaries of the primitive oral cavity. These facial prominences arise during early embryogenesis from ventrally migrating neural crest cells in combination with the head ectoderm and mesoderm and undergo directed growth and expansion around the nasal pits to actively fuse with each other. Initial fusion is between lateral and medial nasal processes and is followed by fusion between maxillary and medial nasal processes. Fusion between these prominences involves active epithelial filopodial and adhering interactions as well as programmed cell death. Slight defects in growth and patterning of the facial mesenchyme or epithelial fusion result in cleft lip with or without cleft palate, the most common and disfiguring craniofacial birth defect. This review will summarize the current understanding of the basic morphogenetic processes and molecular mechanisms underlying upper lip development.

  • PDF

Retinoic Acid Induces Abnormal Palate During Embryogenesis in Rat

  • Shin, Jeong-Oh;Park, Hyoung-Woo;Bok, Jin-Woong;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In order to understand the effects of all-trans-RA on palate development, RA was injected into the abdominal cavity of pregnant mice and then the embryos were taken in the following days and analyzed morphologically as well as molecular biologically. When RA was administered at the stage of E11 or E15, the overall craniofacial development was retarded. The length from jaw to eye was shortened, compared to that of normal group. When the E11 embryos were exposed to RA, cleft lip was also found along with the cleft palate. In vitro palate culture experiment also revealed that RA caused cleft palate. When RT-PCR was performed, early stage administration of RA at E11 inhibited the upregulation of Hoxa7 expression at E15 through E17. Whereas in control group, high level of Hoxa7 expression was detected in the palate of E15 to E17. In the case of Bax, the expression was decreased from E16, while remaining constant in control group. When TUNEL analysis was performed following the RA treatment at E15, TUNEL positive cells were detected in the mesenchymal cells as well as epithelial cells of palatal shelves of E16 and in E17 embryos. Whereas in normal control, TUNEL positive cells were observed mostly at the epithelium around the nasal cavity and oral cavity where rugae is made. These results altogether indicate that exposure to RA during palate development causes facial deformity including cleft palate and cleft lip by modulating the expression of homeotic genes such as Hoxa7 as well as an apoptosis-related gene, Bax, and thus malregulating the apoptosis.

A study of $TGF-\beta$ Expression Patterns In Cleft Palate Formed Rats Induced by BAPN (BAPN으로 유도한 구개열 백서에서 $TGF-\beta$ 발현 양상에 대한 연구)

  • Tae, Ki-Chul;Kim, En-Chel
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.579-587
    • /
    • 2001
  • Cleft palate has been studied with epidemiologic and molecular methods, and many etiologic factors have been examined closely Among the research methods, biologic molecule research has been the most important method for cleft palate formation study The $TGF-\beta$ played an important role in cell migration, epithelial-mesenchymal transdifferentiation, extracellular matrix synthesis and deposition. But there was not much research on the correlation cleft palate induced by beta-aminonitroproprionitrile(BAPN) and $TGF-\beta$ expression. The purpose of the present study was to examine how $TGF-\beta$ is expressed in cleft palate rats. 4 Timed-pregnant Sprague-Dawley rats were obtained on the 10th gestation day. On the 13th day of gestation, BAPN-monofumarate salts (${(C_3H_6N_2)}_2{\cdot}C_4H_4O_4$) were individually, ovally administered to 3 pregnant rats at a ratio of 1g/kg body weight. And 4 pregnant rats were sacrificed on day 20 post coitus (p.c.). The $TGF-\beta$ expression in the cleft formed rats fetuses showed the following patterns : 1. Osteoblast and mesenchymal cells of the cleft pa)ate rats were of low expression compared with those of the control rats. 2. The cleft palate rats didn't show uy difference in the $TGF-\beta$ expression of osteocyte item the control rats. 3. In western blot analysis, the thickness of band of $TGF-\beta$ in the cleft palate rats was thinner and more diluted than that of the control rats.

  • PDF

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

Transforming Growth Factor-β3 Gene SfaN1 Polymorphism in Korean Nonsyndromic Cleft Lip and Palate Patients

  • Kim, Myung-Hee;Kim, Hyo-Jin;Choi, Je-Yong;Nahm, Dong-Seok
    • BMB Reports
    • /
    • v.36 no.6
    • /
    • pp.533-537
    • /
    • 2003
  • The nonsyndromic cleft lip and palate (NSCL/P) is a congenital deformity of multifactorial origin with a relatively high incidence in the oriental population. Various etiologic candidate genes have been reported with conflicting results, according to race and analysis methods. Recently, the ablation of the TGF-${\beta}3$ gene function induced cleft palates in experimental animals. Also, polymorphisms in the TGF-${\beta}3$ gene have been studied in different races; however, they have not been studied in Koreans. A novel A $\rightarrow$ G single nucleotide polymorphism (defined by the endonuclease SfaN1) was identified in intron 5 of TGF-${\beta}3$ (IVS5+104 A > G). It resulted in different genotypes, AA, AG, and GG. The objective of this study was to investigate the relationship between the SfaN1 polymorphism in TGF-${\beta}3$ and the risk of NSCL/P in the Korean population. The population of this study consisted of 28 NSCL/P patients and 41 healthy controls. The distribution of the SfaN1 genotypes was different between the cases and controls. The frequency of the G allele was significantly associated with the increased risk of NSCL/P [odds ratio (OR) = 15.92, 95% confidence interval (CI) = 6.3-41.0]. The risk for the disease increased as the G allele numbers increased (GA genotype: OR = 2.11, 95% CI = 0.38-11.68; GG genotype: OR = 110.2, 95% CI = 10.67 - 2783.29) in NSCL/P. A stratified study in patients revealed that the SfaN1 site IVS5+104A > G substitution was strongly associated with an increased risk of NSCL/P in males (p < 0.001), but not in females. In conclusion, the polymorphism of the SfaN1 site in TGF-${\beta}3$ was significantly different between the NSCL/P patients and the control. This may be a good screening marker for NSCL/P patients among Koreans.

Surgical Treatment of Facial Vascular Malformations (안면부 혈관기형 환자의 수술적 처치)

  • Kim, Soung-Min;Park, Jung-Min;Eo, Mi-Young;Myoung, Hoon;Lee, Jong-Ho;Choi, Jin-Young
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • Vascular malformations (VMs) in the head and neck region are present at birth and grow commensurately with the child, they can result in significant cosmetic problems for the patient, and some may lead to even serious life threatening hemorrhage. Although the molecular mechanisms underlying the formation of these VMs remain unclear, lesions are known to result from abnormal development and morphogenesis. Histologically, there are no evidence of cellular proliferation, but rather progressive dilatation of abnormal channels, which VMs are designated to their prominent channel types such as capillary, venous, lymphatic, arterial, and combined malformations. VMs with an arterial component are rheologically fast-flow, whereas capillary, lymphatic, and venous components are slow-flow. In this article, we review the clinical presentations, diagnosis, and management of VMs of facial regions with author's embolization and surgical treatment cases.

  • PDF

Dopamine as a Strong Candidate for a Neurotransmitter in a Hydrozoan Jellyfish

  • Chung, Jun-Mo
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 1995
  • Recent studies have shown that dopamine applied to cultured swimming motor neurons of Polyorchis penicillatus produces an inhibitory action by opening potassium channels through $D_2$-like receptors. In this study, it was demonstrated that dopamine found in the hydromedusa was not from exogenous sources and the content of dopamine depended on the $Ca^{2+}$ content of the dissecting media. In addition, a combination of thin layer chromatography and high performance liquid chromatography showed the presence of DOPA and DO PAC-like compounds in the jellyfish. The glyoxylic acid method for catecholamines suggested that a population of small cells, neither swimming motor neurons nor B-like neurons, had dopaminergic systems. From all these results, it is suggested here that DA synthesized from DOPA in some cells is released. being dependent on calcium concentrations, into a synaptic cleft and degraded into DOPAC after acting as an inhibitory transmitter to swimming motor neurons.

  • PDF