• Title/Summary/Keyword: Molecular Marker

Search Result 1,039, Processing Time 0.026 seconds

MR Contrast Agents and Molecular Imaging (MR조영제와 분자영상)

  • Moon, Woo-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.205-208
    • /
    • 2004
  • The two major classes of magnetic resonance (MR) contrast agents are paramagnetic contrast agents, usually based on chelates of gadolinium generating T1 positive signal enhancement, and super-paramagnetic contrast agents that use mono- or polycrystalline iron oxide to generate strong T2 negative contrast in MR images. These paramagnetic or super-paramagnetic complexes are used to develop new contrast agents that can target the specific molecular marker of the cells or tan be activated to report on the physiological status or metabolic activity of biological systems. In molecular imaging science, MR imaging has emerged as a leading technique because it provides high-resolution three-dimension maps of the living subject. The future of molecular MR imaging is promising as advancements in hardware, contrast agents, and image acquisition methods coalesce to bring high resolution in vivo imaging to the biochemical sciences and to patient care.

Estimation of Genetic Variation of Korean Isolates of Phytophthora capsici by Using Molecular Markers

  • Chee, Hee-Youn;Jee, Hyeong-Jin
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Genetic diversity of 21 Korean Phytophthora capsici isolates was analyzed by using several molecular markers such as random amplified polymorphic DNA(RAPD), M-13, microsatellite and random amplified microsatellite sequences(RAMS). The overall average similarity coefficient among the isolates was 86% based on the combined data obtained by the molecular markers. No molecular markers were found to be associated with hosts or geographic regions. In addition to RAPD, analysis based on repeated sequences such as $(GTG)_5$, M-13 and RAMS could be used to assess population structure of P. capsici.

  • PDF

Identification of AFLP Marker Linked to a SCN Resistant Gene in Soybean

  • Ko, Mi-Suk;Kim, Myung-Sik;Han, Soung-Jin;Chung, Jong-Il;Kang, Jin-Ho
    • Plant Resources
    • /
    • v.5 no.3
    • /
    • pp.169-175
    • /
    • 2002
  • The soybean cyst nematode (Heterodera glycines Inchinoe; SCN) is a devastating pest of soybean and is responsible for significant losses in yield. The use of resistant cultivars is the effective method to reduce or eliminate SCN damage. The objective of this research is to identify AFLP markers linked to the SCN resistant genes. Bulked genomic DNA was made from resistant and susceptible genotypes to SCN and a total of 19 primer combinations were used. About 31 fragments were detected per primer combination. The banding patterns were readily distinguished in resistant and susceptible bulked genotypes. Polymorphic fragments were detected between resistant and susceptible bulked genotypes in the primer combination of CGT/GGC, CAG/GTG and CTC/GAG. In primer combinations of CGT/GGC and CAG/GTG, bulked resistant genotype produced a polymorphic bands. However, in primer of CTC/GAG, bulked susceptible genotype produced a polymorphic fragments. Three AFLP markers identified as a polymorphic fragments between bulked genomic DNA were mapped in 85 F2 population. Among them, only two markers, CGT/GGC and CTC/GAG, was linked and was mapped. Broad application of AFLP marker would be possible for improving resistant cultivars to SCN.

  • PDF

Development of Gene Based STS Markers in Wheat

  • Lee, Sang-Kyu;Heo, Hwa-Young;Kwon, Young-Up;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • The objective of this study is to develop the gene based sequence tagged site (STS) markers in wheat. The euchromatin enriched genomic library was constructed and the STS primer sets were designed using gene based DNA sequence. The euchromatin enriched genomic (EEG) DNA library in wheat was constructed using the $Mcr$A and $Mcr$BC system in $DH5{\alpha}$ cell. The 2,166 EEG colonies have been constructed by methylated DNA exclusion. Among the colonies, 606 colonies with the size between 400 and 1200 bp of PCR products were selected for sequencing. In order to develop the gene based STS primers, blast analysis comparing between wheat genetic information and rice genome sequence was employed. The 227 STS primers mainly matched on $Triticum$ $aestivum$ (hexaploid), $Triticum$ $turgidum$ (tetraploid), $Aegilops$ (diploid), and other plants. The polymorphisms were detected in PCR products after digestion with restriction enzymes. The eight STS markers that showed 32 polymorphisms in twelve wheat genotypes were developed using 227 STS primers. The STS primers analysis will be useful for generation of informative molecular markers in wheat. Development of gene based STS marker is to identify the genetic function through cloning of target gene and find the new allele of target trait.

Efficiency of Sex-linked Molecular Markers for the Selection of Seedlings Bearing Male Flowers in Persimmon (Diospyros kaki Thunb.) (감 수꽃 착생 실생개체 선발 마커의 효율성 검정)

  • Park, Yeo Ok;Shon, Ji-Young;Choi, Seong-Tae;Kim, Eun-Gyeong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.239-249
    • /
    • 2020
  • Persimmon flowers are fruit-bearing female, pollen-bearing male, or hermaphrodite, containing both a pistil and a stamen. Using prominent PCNA persimmons as male parents is very important for breeding programs, as the selection procedure for new cultivars bearing male flowers requires a long time and a large field in a traditional crossbreeding method. To improve breeding efficiency through early selection of male flower-bearing plants at the seedling stage, analysis was performed on 88 major cultivars whose gender expressions are known, using two male flower selection markers recommended by Akagi et al. The OGI locus marker and DISx-AF4S marker results showed that 83 and 72 cultivars, respectively, matched in terms of gender expression and marker analysis. For the OGI locus marker, 890 plants were selected from 2,509 seedlings obtained from crossbreeding with the mother plant "Migamjosang," which was the breeding cultivar. Comparing the gender expression of the flowers and the marker with 1,186 crossbred seedlings, excluding the unfertilized and dead plants, inconsistencies were found in 401 plants (33.8%). For the DISx-AF4S marker, 636 plants were selected from 889 seedlings obtained from 12 cross-combinations. The results of the sex expression and marker analysis were compared to 379 plants, excluding the unfertilized and dead plants, and inconsistencies were found in 247 plants (65.2%). These results indicate that the examined DISx-AF4S and OGI locus markers would not be suitable for utilization in the breeding field.

Molecular Mapping of Resistant Genes to Brown Planthopper, Bphl and bph2, in Rice

  • Cha, Young-Soon;Cho, Yong-Gu;Shin, Kyeong-Og;Yeo, Un-Sang;Choi, Jae-Eul;Eun, Moo-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.345-349
    • /
    • 1999
  • This study was carried out to map Bphl and bph2 gene in Mudgo and Sangju13 (Oryza sativa L.) respectively conferring resistance to brown plan-thopper (BPH) and to establish the marker-assisted selection (MAS) system. Bulked seedling (grown for 20 days) test was conducted with the 73 F4 lines derived from a cross between Nagdongbyeo and Mudgo for Bphl and with 53 BC3F5 lines derived from the Milyang95/Sangju13 cross for bph2. Bph1 was mapped between RG413 and RG901 on chromo-some 12 at a distance of 7.5 cM from RG413 and 8.4 cM from RG90l. A recessive gene bph2 was located near RZ76 on chromosome 12 at a distance of 14.4 cM. Bphl and bph2 were linked to each other with a distance of about 30 cM. An RFLP marker, RG413 linked to Bphl, was converted to an STS marker to facilitate the marker-assisted selection. BPH resistant genotypes could be selected with 92% accuracy in a population derived from a line of NM47-B-B.

  • PDF

Identification of Marker Nucleotides for the Molecular Authentication of Araliae Continentalis Radix Based on the Analysis of Universal DNA Barcode, matK and rbcL, Sequences (범용성 DNA 바코드(matK, rbcL) 분석을 통한 독활(獨活) 유전자 감별용 Marker Nucleotide 발굴)

  • Kim, Wook Jin;Yang, Sungyu;Choi, Goya;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.15-23
    • /
    • 2016
  • Objectives : Araliae Continentalis Radix and Angelicae Pubescentis Radix have been used as the same medicinal name Korean and Chinese traditional medicines, respectively. The authentic Araliae Continentalis Radix is described only the root of Aralia continentalis in the Korean Pharmarcopoeia. However, the dried root of Angelica biserrata, Levisticum officinale, or Heracleum moellendorffii also has been distributed adulterants of Araliae Continentalis Radix. To develop a reliable method for identifying Araliae Continentalis Radix from adulterants, we carried out the analyses of universal DNA barcode sequences.Methods : Four plants species were collected from different habitate and nucleotide sequences of matK and rbcL were analyzed. The species-specific sequences and phylogenetic relationship were estimated using entire sequences of two DNA barcodes, respectively.Results : In comparative analysis of matK sequences, we were identified 104 positions of marker nucleotide for Ar. continentalis, 3 for An. biserrata, 4 for L. officinale and 8 for H. moellendorffii enough to distinguish individual species, respectively. Furthermore, we obtained marker nucleotides in rbcL at 42 positions for Ar. continentalis, 5 for An. biserrata and 2 for H. moellendorffii, but not for L. officinale. The phylogenetic tree of matK and rbcL were showed that all samples were clustered into four groups constituting homogeneous clades within the species.Conclusions : We confirmed that species-specific marker nucleotides of matK sequence provides distinct genetic information enough to identify four species. Therefore, we suggest that matK gene is useful DNA barcode for discriminating authentic Araliae Continentalis Radix from inauthentic adulterants.