• Title/Summary/Keyword: Molecular Manufacturing

Search Result 184, Processing Time 0.031 seconds

A Study on the preparation of optimum piezoelectric organic thin films of PVD method and switch characteristic (진공증착법을 이용한 최적의 압전성 유기박막의 제조와 스위치 특성에 관한 연구)

  • 박수홍;이선우;이희규
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.194-200
    • /
    • 1999
  • In this paper studied was the piezoelectric properties of the $\beta$-PVDF organic thin films prepared by physical vapour deposition method. The molecular orientation of organic thin films was controlled by the application of an electric field and variation of substrate temperature during the evaporation process. Optimum conditions of manufacturing $\beta$-PVDF organic thin film by physical vapor deposition method is to keep at the substrate temperature of $80^{\circ}C$, at the applied electric field of 142.8 kV/cm. The voltage output coefficient increased from 1.39 to 7.04V increasing the force moment.

  • PDF

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Influence of Growth Temperature for Active Layer and Buffer Layer Thickness on ZnO Nanocrystalline Thin Films Synthesized Via PA-MBE

  • Park, Hyunggil;Kim, Younggyu;Ji, Iksoo;Kim, Soaram;Lee, Sang-Heon;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.203.1-203.1
    • /
    • 2013
  • Zinc oxide (ZnO) nanocrystalline thin films on various growth temperatures for active layer and different buffer layer thickness were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si substrates. The ZnO active layer were grown with various growth temperature from 500 to $800^{\circ}C$ and the ZnO buffer layer were grown for different time from 5 to 40 minutes. To investigate the structural and optical properties of the ZnO thin films, scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescence (PL) spectroscopy were used, respectively. In the SEM images, the ZnO thin films have high densification of grains and good roughness and uniformity at $800^{\circ}C$ for active layer growth temperature and 20 minutes for buffer layer growth time, respectively. The PL spectra of ZnO buffer layers and active layers display sharp near band edge (NBE) emissions in UV range and broad deep level emissions (DLE) in visible range. The intensity of NBE peaks for the ZnO thin films significantly increase with increase in the active layer growth temperature. In addition, the NBE peak at 20 minutes for buffer layer growth time has the largest emission intensity and the intensity of DLE peaks decrease with increase in the growth time.

  • PDF

Nanomanipulation and Nanomanufacturing based on Ion Trapping and Scanning Probe Microscopy (SPM)

  • Kim, Dong-Whan;Tae, Won-Si;Yeong, Maeng-Hui;K. L. Ekinci
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.530-537
    • /
    • 2004
  • Development of a versatile nanomanipulation tool is an overarching theme in nanotechnology. Such a tool will likely revolutionize the field given that it will enable fabrication and operation of a wealth of interesting nanodevices. This study seeks funding to create a novel nanomanipulation system with the ultimate goal of using this system for nanomanufacturing at the molecular level. The proposed design differs from existing approaches. It is based on a nanoscale ion trap integrated to a scanning prove microscope (SPM) tip. In this design, molecules to be assembled will be ionized and collected in the nanoscale ion trap all in an ultra high vacuum (UHV) environment. Once filled with the molecular ions, the nanoscale ion trap-SPM tip will be moved on a substrate surface using scanning probe microscopy techniques. The molecular ions will be placed at their precise locations on the surface. By virtue of the SPM, the devices that are being nanomanufactured will be imaged in real time as the molecular assembly process is carried out. In the later stages, automation of arrays of these nanomanipulators will be developed.

  • PDF

Shrinkage Behaviors of Polypropylene according to Product Form in Injection Molding (사출성형에서 제품 형상에 따른 PP수지의 수축거동)

  • Choi, Youn-Sik;Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.46-51
    • /
    • 2004
  • Nowadays, plastic industry has needed to produce parts that require high precision and quality. To make a high precision and quality part, before injection molding, plastic material in investigated about their properties such as shrinkage, warpage, etc. In this study, experiments were conducted with PP(polypiopylene) to figure out shrinkage behavior according to three type aspect ratio of samples. The injection speed that affects on shear late, molecular orientation within plastic part was determined as main variable of experiment. As a result of experimental study, part shrinkage had a tendency to be decreased by increasing injection speed and aspect ratio of samples.

  • PDF

Development of Ultrasonication-assisted Extraction Process for Manufacturing Extracts with High Content of Pinosylvin from Pine Leaves (솔잎의 피노실빈 고함유 추출물 생산을 위한 초음파 추출 공정 개발)

  • 조용진;이상국;안용현;피재호
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.325-334
    • /
    • 2003
  • Pinosylvin, a stilbenoid phytoalexin, is a health ingredient to be extracted from pine leaves. In this study, ultrasonication-assisted extraction process for manufacturing extracts with high content of pinosylvin from pine leaves was investigated. As process and system variables, ultrasonic power, sonication time and solvent ratio were selected. According to the experimental results, the effective yield of pinosylvin increased with the increase of ultrasonic power and sonication time and the decrease of solvent ratio. When the ultrasonic power of 2400 W/L was added to the solution of pulverized pine leaves of 8 g per 1 L of a solvent for 10 minutes, yield of extracts and purity, effective yield and concentration ratio of pinosylvin were 0.3166 g/g, 0.7247 mg/g, 0.2294 mg/g and 23.0, respectively.

Design and Implementation of a Fault-Tolerant Magnetic Bearing System

  • Park, B.C.;Noh, M.D.;Ro, S.K.;Kyung, J.H.;Park, J.K.
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.37-42
    • /
    • 2003
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings, which we don't expect for conventional passive bearings. These failure modes include electric power outage, power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults in the system. In this paper, we designed a fault-tolerant magnetic bearing system for a turbo-molecular vacuum pump. The system can cope with the actuator/amplifier faults which are the most common faults in a magnetic bearing system. We implemented the existing fault-tolerant algorithms to experimentally prove the adequacy of the algorithms for industrial applications. As it turns out, the system can operate even with three simultaneously failing poles out of eight actuator poles.

The Study on The Method of Manufacturing Herbal Acupuncture (약침액(藥鍼液) 제조법(製造法)에 대한 문헌적(文獻的) 고찰(考察))

  • Lee, Jun-Hee;Lee, Sang-Ryong
    • Korean Journal of Acupuncture
    • /
    • v.22 no.2
    • /
    • pp.127-149
    • /
    • 2005
  • This study is designed to investigate the method of manufacturing herbal acupuncture through literature of oriental medicine. The findings of this study are as follows; 1. The methods of manufacturing herbal acupuncture go through the process of abstraction, purification, mixing, filtration, putting and tight sealing in the container, sterilization, quality control, printing and packing 2. There are many ways to manufacturing herbal acupuncture, for example water-alcohol precipitation, alcohol-water precipitation, liquid-liquid abstract, acid-base abstract, metal base precipitation, distillation, molecular structure, polyamide absorption, dialysis, and ion exchange, etc. And popular method is water-alcohol precipitation. This is through alcohol precipitate extracting the principal ingredients from water abstraction. This is very simple and efficient way using melting characteristics of compounds in herb to water and ethanol. 3. Sterilization of herbal acupuncture is through heating-pressure, boiling, steam flowing, low temperature, filtering, radiation, cooling, and microwaves. Nowadays filtering is commonly used. And sterilization is estimated by an examination of asepsis . 4. Herbal acupuncture must be undergo study and experiment to clinical use. The problems of herbal acupuncture are turbidity, instability, causing hemolysis, pain, and fever. So many provisions (addition, sterilization, and filtration etc.) must be prepared. 5. The theory of manufacturing herbal acupuncture is from oriental medicine, not western. So it must be corresponded to oriental medical theory, for example Gimi(氣味), Guigyung(歸經), Ingyung(引經), Bosa(補瀉), and Match of Herb. It is recommended that further study of many other sided investigations in the future.

  • PDF

Decolorization of methyl red by selected bacteria in industrial waste sludge

  • Yim, Dae-Woo;Lee, Kang-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.398-401
    • /
    • 2003
  • Azo dyes are aromatic compounds characterized by one or more azo bonds $(R_l-N=N-R_2)$. More than 800,000 tons of dyes are produced annually worldwide, of which 60-70% are azo dyes. During manufacturing, an estimated 10-15% is released into the environment. Aside from their negative aesthetic effects, certain azo dyes have been shown to be toxic and, in some cases, these compounds are carcinogenic and mutagenic. To establish biological wastewater treatment of azo dye, it is essential to discover azo dye-degrading microorganisms. In this report, sludge-contaminated with dyes were gathered through wastewater outlets from the industrial regions. The following to separation of bacteria within them, bacteria which decolorize methyl red, a azo dye, were selected and destined.

  • PDF

Linear and Hyperbranched Polymers via Electrophilic Substitution Reaction in Polyphosphoric $Acid/P_{2}O_{5}$

  • Choi, Ja-Young;Jeon, In-Yeop;Tan, Loon-Seng;Baek, Jong-Beom
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.195-195
    • /
    • 2006
  • A superior electrophilic substitution reaction medium that is non-toxic, relatively less corrosive, and non-volatile electrophilic substitution reaction to afford high molecular weight linear and hyperbranched polyetherketones (PEK' s) was developed. The system has very strong driving force to give extra ordinary high molecular weight linear and hyperbranched PEK' s. The reaction medium was further extended to prepare various types of copolymers and covalently grafted polymers onto carbon nanotube (CNT) or carbon nanofiber (CNF). By using characteristic hydrophilic nature of the reaction medium, hyperbranched PEK' s could be synthesized from commercially available $A_3\;+\;B_2$ monomers without network formation via selective solubility of the monomers.

  • PDF