• Title/Summary/Keyword: Molecular Forces

Search Result 143, Processing Time 0.022 seconds

Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces

  • Baek, Kyung Yup;Kim, Seohyun;Koh, Hye Ran
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligand-receptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography (나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kim Kyung-Woong;Kang Ji-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.852-859
    • /
    • 2005
  • Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and Nose-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion and friction forces on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

Encapsulation Characteristics of Gas Molecules in the Cavities of Zeolite A

  • Jin Hyun Kwon;Kee Heon Cho;Hae Won Kim;Soong Hyuck Suh;Nam Ho Heo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.583-588
    • /
    • 1993
  • Encapsulation capacities $(V_{gas})$ of, $H_2,\;N_2,\;CO,\;CH_4$ and CO, for $Cs_{2.5}Na_{9.5}-A (C_s-A)$ and $Na_{12}$-A (Na-A) zeolites have been measured in order to understand the effect of molecular properties on the $V_{gas}$. With appropriate number of large blocking cations on the main windows of cavities in zeolite A, gas molecules can be encapsulated in both the ${\alpha}$ -and ${\beta}$-cages, resulting in much large $V_{gas}.\;V_{gas}$ is proportional to the encapsulation pressure (Pe) and is also dependent on the molecular properties of encapsulated gases themselves, especially on intermolecular forces originated from the quadrupole moments of molecules in the molecular-dimensioned cavities of zeolite A. At the low range of Pe, molecules with larger $V_{gas}$ and intermolecular forces apparently have smaller increasing tendencies of $V_{gas}$ upon increases in Pe, showing a linear relationship between the tendencies and intermolecular forces rather than their sizes. Interactions between encapsulated molecules of $CH_4$ and framework of Cs-A have been estimated and they seem to depend on the number of encapsulated molecules per unit cell. On the basis of calculated density of $CO_2$, presence of liquid-like phase for the encapsulated molecules in the molecular dimensioned cavities of zeolite A is postulated.

Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat

  • Li, Ke;Liu, Jun-Ya;Fu, Lei;Zhao, Ying-Ying;Bai, Yan-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.721-733
    • /
    • 2019
  • Objective: The objectives of this study were to investigate the thermal gelation properties and molecular forces of actomyosin extracted from two classes of chicken breast meat qualities (normal and pale, soft and exudative [PSE]-like) during heating process to further improve the understanding of the variations of functional properties between normal and PSE-like chicken breast meat. Methods: Actomyosin was extracted from normal and PSE-like chicken breast meat and the gel strength, water-holding capacity (WHC), protein loss, particle size and distribution, dynamic rheology and protein thermal stability were determined, then turbidity, active sulfhydryl group contents, hydrophobicity and molecular forces during thermal-induced gelling formation were comparatively studied. Results: Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that protein profiles of actomyosin extracted from normal and PSE-like meat were not significantly different (p>0.05). Compared with normal actomyosin, PSE-like actomyosin had lower gel strength, WHC, particle size, less protein content involved in thermal gelation forming (p<0.05), and reduced onset temperature ($T_o$), thermal transition temperature ($T_d$), storage modulus (G') and loss modulus (G"). The turbidity, reactive sulfhydryl group of PSE-like actomyosin were higher when heated from $40^{\circ}C$ to $60^{\circ}C$. Further heating to $80^{\circ}C$ had lower transition from reactive sulfhydryl group into a disulfide bond and surface hydrophobicity. Molecular forces showed that hydrophobic interaction was the main force for heat-induced gel formation while both ionic and hydrogen bonds were different significantly between normal and PSE-like actomyosin (p<0.05). Conclusion: These changes in chemical groups and inter-molecular bonds affected protein-protein interaction and protein-water interaction and contributed to the inferior thermal gelation properties of PSE-like meat.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Molecular Dynamics Simulation of Friction and Wear Behavior Between Carbon and Copper (탄소와 구리의 마찰 및 마모에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kang Ji-Hoon;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, friction and wear behaviors between monocrystalline, defect-free copper and carbon on the atomic scale are investigated by using 2-dimensional molecular dynamics simulation. It is assumed that all interatomic forces are given by Morse potential. The deformation of carbon is assumed to be neglected and vacuum condition is also assumed. Average friction and normal forces for various surface conditions, various scratch speeds and scratch depths are obtained from simulations. Changes of wear behaviors for various scratch speeds and surface conditions are investigated by observing snapshots in scratch process. The effects of surface conditions, scratch speeds, and scratch depths on the friction force, normal force, and friction coefficient are also investigated.

A Study on Concentration, Identification, and Reduction of Airborne Microorganisms in the Military Working Dog Clinic

  • Kim, Min-Ho;Baek, Ki-Ook;Park, Gyeong-Gook;Jang, Je-Youn;Lee, Jin-Hong
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.517-525
    • /
    • 2020
  • Background: The study was planned to show the status of indoor microorganisms and the status of the reduction device in the military dog clinic. Methods: Airborne microbes were analyzed according to the number of daily patient canines. For identification of bacteria, sampled bacteria was identified using VITEK®2 and molecular method. The status of indoor microorganisms according to the operation of the ventilation system was analyzed. Results: Airborne bacteria and fungi concentrations were 1000.6 ± 800.7 CFU/m3 and 324.7 ± 245.8 CFU/m3. In the analysis using automated identification system, based on fluorescence biochemical test, VITEK®2, mainly human pathogenic bacteria were identified. The three most frequently isolated genera were Kocuria (26.6%), Staphylococcus (24.48%), and Granulicatella (12.7%). The results analyzed by molecular method were detected in the order of Kocuria (22.6%), followed by Macrococcus (18.1%), Glutamicibacter (11.1%), and so on. When the ventilation system was operated appropriately, the airborne bacteria and fungi level were significantly decreased. Conclusion: Airborne bacteria in the clinic tend to increase with the number of canines. Human pathogenic bacteria were mainly detected in VITEK®2, and relatively various bacteria were detected in molecular analysis. A decrease in the level of bacteria and fungi was observed with proper operation of the ventilation system.

Application of Graphene Nanoribbon Trench for C60 Fullerene Shuttle Device: Molecular Dynamics Simulations (풀러렌 셔틀 소자로 그래핀 나노리본 트렌치 응용에 관한 분자동력학 시뮬레이션 연구)

  • Kwon, Oh-Kuem;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.1
    • /
    • pp.887-894
    • /
    • 2018
  • We investigated the position controlling C60 fullerene encapsulated into a graphene-nanoribbon trench via classical molecular dynamics simulations. The graphene-nanoribbon trench can provide nanoscale empty spaces, and a C60 encapsulated therein can be considered as media for a nanoelectromechanical shuttle device. The classical molecular dynamics simulations presented here provide information on the potential application of a graphene-nanoribbon trench in a C60 shuttle device. Driving forces applied to C60 resulted in its motion toward the edges of the graphene-nanoribbon trench, the suction forces induced at both edges were balanced with the driving forces, and finally, the C60 fullerene gradually settled on the edges of the graphene-nanoribbon trench after several oscillations. The results of the present simulation suggest the importance of graphene-nanoribbon trenches encapsulating fullerenes in a wide range of applications in the field of nanotechnology.

Role of extrinsic physical cues in cancer progression

  • Ok-Hyeon Kim;Tae Jin Jeon;Yong Kyoo Shin;Hyun Jung Lee
    • BMB Reports
    • /
    • v.56 no.5
    • /
    • pp.287-295
    • /
    • 2023
  • The tumor microenvironment (TME) is a complex system composed of many cell types and an extracellular matrix (ECM). During tumorigenesis, cancer cells constantly interact with cellular components, biochemical cues, and the ECM in the TME, all of which make the environment favorable for cancer growth. Emerging evidence has revealed the importance of substrate elasticity and biomechanical forces in tumor progression and metastasis. However, the mechanisms underlying the cell response to mechanical signals-such as extrinsic mechanical forces and forces generated within the TME-are still relatively unknown. Moreover, having a deeper understanding of the mechanisms by which cancer cells sense mechanical forces and transmit signals to the cytoplasm would substantially help develop effective strategies for cancer treatment. This review provides an overview of biomechanical forces in the TME and the intracellular signaling pathways activated by mechanical cues as well as highlights the role of mechanotransductive pathways through mechanosensors that detect the altering biomechanical forces in the TME.