• Title/Summary/Keyword: Molecular Flow

Search Result 890, Processing Time 0.026 seconds

Rheological Measurement of Fiber Spinnability of PVA Solution Dopes in DMSO

  • Chae, Dong-Wook
    • Textile Coloration and Finishing
    • /
    • v.22 no.3
    • /
    • pp.187-193
    • /
    • 2010
  • The effects of molecular weight (MW) and concentration on the rheological properties of poly(vinyl alcohol) (PVA) solutions in dimethyl sulfoxide (DMSO) were investigated at $30^{\circ}C$. Ubbelohde viscometer and rotational rheometer were employed for dilute and concentrated regime, respectively. In the dilute regime, the Mark-Houwink exponent ($\alpha$) of the solutions determined from three different MWs proved 0.73. The critical concentration (C*), in which the entanglement and overlap of polymer molecules began to take place, decreased with increasing the MW of PVA. Huggins constant ($K_H$) values ranged from 0.33 to 0.45 over the MW examined. In the log-log plot of $\eta_{sp}$ versus [$\eta$]C, the PVA with higher degree of polymerization (DP) gave a greater slope exhibiting the inflection point in the vicinity of C*. In the dynamic viscosity ($\eta'$) curve, the PVA solutions of DP 1700 presented Newtonian fluid behavior over most of the frequency range examined. However, the lower Newtonian flow region reduced with increasing the DP. As the PVA concentration increased, $\eta'$ was increased and the onset shear rate for pseudoplasticity was decreased. In the Cole-Cole plot, PVA solutions showed almost a single master curve in a slope of ca. 1.65 regardless of the DP. However, the increase of the concentration from 8 to 12 wt% for PVA solutions of DP 5000 decreased the slope from 1.73 to 1.57. In the tan $\delta$ curve, the onset frequency for sol-gel transition was shifted from 154 to 92 rad/s with increasing the DP from 3300 to 5000 and from 192 to 46 rad/s with increasing the concentration from 8 to 12 wt%. In addition, longer relaxation time ($\lambda$) was observed with increasing the DP and concentration.

CLUSTERING DNA MICROARRAY DATA BY STOCHASTIC ALGORITHM

  • Shon, Ho-Sun;Kim, Sun-Shin;Wang, Ling;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.438-441
    • /
    • 2007
  • Recently, due to molecular biology and engineering technology, DNA microarray makes people watch thousands of genes and the state of variation from the tissue samples of living body. With DNA Microarray, it is possible to construct a genetic group that has similar expression patterns and grasp the progress and variation of gene. This paper practices Cluster Analysis which purposes the discovery of biological subgroup or class by using gene expression information. Hence, the purpose of this paper is to predict a new class which is unknown, open leukaemia data are used for the experiment, and MCL (Markov CLustering) algorithm is applied as an analysis method. The MCL algorithm is based on probability and graph flow theory. MCL simulates random walks on a graph using Markov matrices to determine the transition probabilities among nodes of the graph. If you look at closely to the method, first, MCL algorithm should be applied after getting the distance by using Euclidean distance, then inflation and diagonal factors which are tuning modulus should be tuned, and finally the threshold using the average of each column should be gotten to distinguish one class from another class. Our method has improved the accuracy through using the threshold, namely the average of each column. Our experimental result shows about 70% of accuracy in average compared to the class that is known before. Also, for the comparison evaluation to other algorithm, the proposed method compared to and analyzed SOM (Self-Organizing Map) clustering algorithm which is divided into neural network and hierarchical clustering. The method shows the better result when compared to hierarchical clustering. In further study, it should be studied whether there will be a similar result when the parameter of inflation gotten from our experiment is applied to other gene expression data. We are also trying to make a systematic method to improve the accuracy by regulating the factors mentioned above.

  • PDF

Induction of Cell Death by Betulinic Acid through Induction of Apoptosis and Inhibition of Autophagic Flux in Microglia BV-2 Cells

  • Seo, Jeongbin;Jung, Juneyoung;Jang, Dae Sik;Kim, Joungmok;Kim, Jeong Hee
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.618-624
    • /
    • 2017
  • Betulinic acid (BA), a natural pentacyclic triterpene found in many medicinal plants is known to have various biological activity including tumor suppression and anti-inflammatory effects. In this study, the cell-death induction effect of BA was investigated in BV-2 microglia cells. BA was cytotoxic to BV-2 cells with $IC_{50}$ of approximately $2.0{\mu}M$. Treatment of BA resulted in a dose-dependent chromosomal DNA degradation, suggesting that these cells underwent apoptosis. Flow cytometric analysis further confirmed that BA-treated BV-2 cells showed hypodiploid DNA content. BA treatment triggered apoptosis by decreasing Bcl-2 levels, activation of capase-3 protease and cleavage of PARP. In addition, BA treatment induced the accumulation of p62 and the increase in conversion of LC3-I to LC3-II, which are important autophagic flux monitoring markers. The increase in LC3-II indicates that BA treatment induced autophagosome formation, however, accumulation of p62 represents that the downstream autophagy pathway is blocked. It is demonstrated that BA induced cell death of BV-2 cells by inducing apoptosis and inhibiting autophagic flux. These data may provide important new information towards understanding the mechanisms by which BA induce cell death in microglia BV-2 cells.

Simultaneous Determination of Asperosaponins and Iridoid Glycosides from Dipsaci Radix by Using LC-ESI-MS Spectrometry (속단(Dipsaci Radix) 중 Asperosaponins 및 Iridoid glycosides의 LC-ESI-MS에 의한 동시분석)

  • Cho, Hwang-Eui;Son, In-Seop;Kim, Sun-Cheun;Son, Kun-Ho;Woo, Mi-Hee;Moon, Dong-Cheul
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.2
    • /
    • pp.137-146
    • /
    • 2012
  • Dipsaci Radix (Dipsacaceae) has been used as a tonic, an analgesic, anti-inflammatory and anti-complement agents in traditional herbal medicine for the therapy of low back pain, knee pain, rheumatic arthritis, traumatic hematoma, and bone fractures. A high-performance liquid chromatography-electrospray ionization-mass spectrometric method (HPLC-ESI-MS) was developed for the simultaneous quantitation method of the five compounds from the herbal drug: asperosaponin VI and asperosaponin XII (terpene glycosides), sweroside, loganin and dipsacus A(iridoid glycosides). HPLC separation of the analytes was achieved on a C18 column ($150{\times}2.0$ mm i.d., 5 ${\mu}m$) using the aqueous methanol containing 5 mM ammonium acetate with gradient flow of the mobile phase. Detection of the analytes was performed by positive ion electrospray ionization, and selected ion monitoring was used for data acquisition using m/z corresponding molecular adduct ion, $[M+NH_4]^+$ and $[M+H]^+$. Calibration graphs showed good linearity ($r^2$=0.9997) over the wide range of the analytes; intra- and inter-day precisions (RSD, %) were within 9.1% and the accuracy between 94.0-111.0%. Recoveries of the analytes through the assay procedure were in the range of 93.7-110.8%. Analytical results of the herbal drugs of Dipsaci Radix (17 samples) show wide distribution of the five marker compounds and clear difference of the species from Phlomidis Radix (4 samples). The developed method would provide a practical guide for the quality control of the herbal drug.

Tacrolimus Differentially Regulates the Proliferation of Conventional and Regulatory CD4+ T Cells

  • Kogina, Kazue;Shoda, Hirofumi;Yamaguchi, Yumi;Tsuno, Nelson H;Takahashi, Koki;Fujio, Keishi;Yamamoto, Kazuhiko
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on $CD4^+$ T cells have yet to be elucidated. This study investigated the effects of tacrolimus on $CD4^+$ T cell subsets. Mouse or human $CD4^+$ T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of $CD4^+$ T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional $CD4^+$ T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory $CD4^+$ T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.

Equol Induces Mitochondria-Dependent Apoptosis in Human Gastric Cancer Cells via the Sustained Activation of ERK1/2 Pathway

  • Yang, Zhiping;Zhao, Yan;Yao, Yahong;Li, Jun;Wang, Wangshi;Wu, Xiaonan
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.742-749
    • /
    • 2016
  • The cancer chemo-preventive effects of equol have been demonstrated for a wide variety of experimental tumours. In a previous study, we found that equol inhibited proliferation and induced apoptotic death of human gastric cancer MGC-803 cells. However, the mechanisms underlying equol-mediated apoptosis have not been well understood. In the present study, the dual AO (acridine orange)/EB (ethidium bromide) fluorescent assay, the comet assay, MTS, western blotting and flow cytometric assays were performed to further investigate the pro-apoptotic effect of equol and its associated mechanisms in MGC-803 cells. The results demonstrated that equol induced an apoptotic nuclear morphology revealed by AO/EB staining, the presence of a comet tail, the cleavage of caspase-3 and PARP and the depletion of cIAP1, indicating its pro-apoptotic effect. In addition, equol-induced apoptosis involves the mitochondria-dependent cell-death pathway, evidenced by the depolarization of the mitochondrial membrane potential, the cleavage of caspase-9 and the depletion of Bcl-xL and full-length Bid. Moreover, treating MGC-803 cells with equol induced the sustained activation of extracellular signal-regulated kinase (ERK), and inhibiting ERK by U0126, a MEK/ERK pathway inhibitor, significantly attenuated the equol-induced cell apoptosis. These results suggest that equol induces mitochondria-dependent apoptosis in human gastric cancer MGC-803 cells via the sustained activation of the ERK1/2 pathway. Therefore, equol may be a novel candidate for the chemoprevention and therapy of gastric cancer.

Genetic Variation of Alien Invasive Red Clover (Trifolium pratense) in Korea (붉은토끼풀의 유전적 변이와 집단구조)

  • Huh Man Kyu;Chung Kyung-Tae;Jeong Yong-Kee
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.273-278
    • /
    • 2005
  • Trifolium pratense (red clover, Fabaceae) is a short-lived herbaceous species and the species is introduced from Europe or North America to Korea approximately 60 years ago. Allozyme variability was examined in populations representing this species. A high level of genetic variation was found in T. pratense populations. Ten of 19 loci $(52.6\%)$ showed detectable polymorphism. Genetic diversity was 0.220. The sexual reproduction, high fecundity, and colonization process are proposed as possible factors contributing to high genetic diversity. Genetic diversity (0.220) was lower than that (0.285) of North American red clover, T. pratense. Korean populations of red clover may be founded by a small sample of larger or moderate populations. An indirect estimate of the number of migrants per generation (Nm = 4.20) indicated that gene flow was extensive among Korean populations of this species.

Comparison of Genetic Diversity and Relationships of Genus Kalopanax Using ISSR Markers (ISSR을 이용한 음나무속 분류군의 유전적 다양성과 관련성 비교)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.740-745
    • /
    • 2006
  • Inter simple sequence repeat (ISSR) markers were performed in order to analyse the phylogenetic relationships of four taxa of Castor-aralia (Kalopanax pictus): K. pictus, K. pictus var. magnificus, K. pictus var. maximowiczii, and thornless K. pictus. The 11 primers were produced 64 reproducible ISSR bands. Analysis of ISSR from individual plants of Korean K. pictus resulted in 41 polymorphic bands with 64.1%. When species were grouped by four taxa, within group diversity was 0.115 $(H_S)$, while among group diversity was 0.467 $(G_{ST})$ on a per locus basis. The estimated gene flow (Nm) for K. pictus var. maximowiczii and K. pictus var. magnificus were very higher than K. pictus. It is suggested that the isolation of geographical distance and reproductive isolation among K. pictus populations may have played roles in shaping the population structure of this species. In phenetic tree, ISSR markers are very effective in classifying natural populations as well as taxon levels of genus Kalopanax in Korea.

Activation of Caspase-3 and -7 on Porcine Bone Marrow Derived Mesenchymal Stem Cells (pBM-MSCs) Cryopreserved with Dimethyl Sulfoxide (DMSO) (동결 보호제(DMSO) 농도에 따른 돼지 중간엽 줄기세포의 Caspase 3과 7 발현)

  • Ock, Sun-A;Rho, Gyu-Jin
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.183-187
    • /
    • 2012
  • Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at $38.5^{\circ}C$ in 5% $CO_2$ incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at $-1^{\circ}C$/min in a Kryo 360 (planner 300, Middlesex, UK) and kept into $LN_2$. Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.

Antioxidant Effect of some Chelating Agents on Soybean Oil (식용대두유에 대한 Chelating agent의 항산화 효과)

  • Cho, Mi-Za;Hahn, Tae-Sik;Kwon, Tae-Bong;Oh, Sung-Ki
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.30-36
    • /
    • 1989
  • Some chelating agents are evaluated as an antioxidant for the autoxidation of soybean oil. Soybean oil is autoxidized under a mild condition (the flow rate of 67ml $O_{2}/min$ and $50^{\circ}C$). The antioxidant effect is measured by active oxygen method, and the spectral change of autoxidized soybean oil examined. The antioxidant effect of chelating agents is increased in order of diphenic acid, naphthoquinone, pyromellitic acid, quinolinic acid and naphthalic acid, and particularly the effect is low in diphenic acid and naphthoquinone. It is found that the effect is more clearly demonstrated by NMR rather than IR and UV and that the effect is dependent on the functional group and geometric molecular structure of chelating agents.

  • PDF