• Title/Summary/Keyword: Molecular Docking

Search Result 306, Processing Time 0.025 seconds

Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B

  • Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Kim, Yong-Seong;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.869-880
    • /
    • 2012
  • Identification of the selective chemical features for Aurora-B inhibitors gained much attraction in drug discovery for the treatment of cancer. Hence to identify the Aurora-B critical features various techniques were utilized such as pharmacophore generation, virtual screening, homology modeling, molecular dynamics, and docking. Top ten hypotheses were generated for Aurora-B and Aurora-A. Among ten hypotheses, HypoB1 and HypoA1 were selected as a best hypothesis for Aurora-B and Aurora-A based on cluster analysis and ranking score, respectively. Test set result revealed that ring aromatic (RA) group in HypoB1 plays an essential role in differentiates Aurora-B from Aurora-A inhibitors. Hence, HypoB1 used as 3D query in virtual screening of databases and the hits were sorted out by applying drug-like properties and molecular docking. The molecular docking result revealed that 15 hits have shown strong hydrogen bond interactions with Ala157, Glu155, and Lys106. Hence, we proposed that HypoB1 might be a reasonable hypothesis to retrieve the structurally diverse and selective leads from various databases to inhibit Aurora-B.

A combined application of molecular docking technology and indirect ELISA for the serodiagnosis of bovine tuberculosis

  • Song, Shengnan;Zhang, Qian;Yang, Hang;Guo, Jia;Xu, Mingguo;Yang, Ningning;Yi, Jihai;Wang, Zhen;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.50.1-50.12
    • /
    • 2022
  • Background: There is an urgent need to find reliable and rapid bovine tuberculosis (bTB) diagnostics in response to the rising prevalence of bTB worldwide. Toll-like receptor 2 (TLR2) recognizes components of bTB and initiates antigen-presenting cells to mediate humoral immunity. Evaluating the affinity of antigens with TLR2 can form the basis of a new method for the diagnosis of bTB based on humoral immunity. Objectives: To develop a reliable and rapid strategy to improve diagnostic tools for bTB. Methods: In this study, we expressed and purified the sixteen bTB-specific recombinant proteins in Escherichia coli. The two antigenic proteins, MPT70 and MPT83, which were most valuable for serological diagnosis of bTB were screened. Molecular docking technology was used to analyze the affinity of MPT70, MPT83, dominant epitope peptide of MPT70 (M1), and dominant epitope peptide MPT83 (M2) with TLR2, combined with the detection results of enzyme-linked immunosorbent assay to evaluate the molecular docking effect. Results: The results showed that interaction surface Cα-atom root mean square deviation of proteins (M1, M2, MPT70, MPT83)-TLR2 protein are less than 2.5 A, showing a high affinity. It is verified by clinical serum samples that MPT70, MPT83, MPT70-MPT83 showed good diagnostic potential for the detection of anti-bTB IgG and M1, M2 can replace the whole protein as the detection antigen. Conclusions: Molecular docking to evaluate the affinity of bTB protein and TLR2 combined with ELISA provides new insights for the diagnosis of bTB.

Docking Study of Cysteinyl Leukotriene 1 Receptor: Therapeutic Target for Allergy

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.228-233
    • /
    • 2016
  • Cysteinyl leukotrienes are inflammatory mediators having important role in pathophysiological conditions such as asthma and allergic rhinitis. CysLT1 receptor mediates most of the disease regulatory actions of the CysLTs and it is been implicated in a number of inflammatory conditions including gastrointestinal and cardiovascular diseases. Hence in the present study, molecular docking of CysLT1 was performed with its potent and orally efficacious antagonist CP-199330 and CP-199331. The aim of this study was to compare the interaction of CP-199330 and CP-199331 with known drugs such as Zafirlukast, Pranlukast and Montelukast which had already showed clinical efficacy in the treatment of asthma. The residues such as TYR83, GLN274, LYS311 and SER313 were found to interact with both the antagonist and the known drugs. Also, we noticed the docking scores and interaction of the antagonists were comparable with the known drugs. Hence these antagonists could serve as better drugs for the treatment of allergy.

Molecular Docking Study of Urotension-2 Receptor (UTS2R)

  • Sathya., B
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.105-109
    • /
    • 2017
  • Urotensin-2 receptor (UTS2R) is the most potent vasoconstrictor and plays a major role in the pathophysiology of various cardiovascular diseases and becomes a potential target for human pharmacotherapy. Hence, we have performed molecular docking of six antagonists with different inhibitory activity against UTS2R into its binding site. The binding mode of these antagonists was obtained using Surflex dock program interfaced in Sybyl-X2.0. The residues such as GLN278, THR304, TYR305, THR300, LEU299, CYS302, ASP47, TYR100 and THR304 are found in interaction between UTS2R and its antagonists. This study could be useful for identifying and analyzing the important residues involved in binding site of UTS2R receptor.

Exploration of the Binding Mode of Indole Derivatives as Potent HIV-1 Inhibitors Using Molecular Docking Simulations

  • Balupuri, Anand;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 2013
  • The HIV-1 envelope glycoprotein gp120 plays a vital role in the entry of the virus into the host cells. The crucial role of the glycoprotein suggests gp120 as potential drug target for the future antiviral therapies. Identification of the binding mode of small drug like compounds has been an important goal in drug design. In the current study we attempt to propose binding mode of indole derivatives in the binding pocket of gp120. These derivatives are reported to inhibit HIV-1 by acting as attachment inhibitors that bind to gp120 and prevent the gp120-CD4 interaction and thus inhibit the infectivity of HIV-1. To elucidate the molecular basis of the small molecules interactions to inhibit the glycoprotein function we employed the molecular docking simulation approach. This study provides insights to elucidate the binding pattern of indole-based gp120 inhibitors and may help in the rational design of novel HIV-1 inhibitors with improved potency.

Docking Study of Corticotropin-Releasing Factor-1 Receptor with Its Antagonists

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • CRFR is involved in the pathophysiology of various disorders including depression, stress, anxiety, post-traumatic stress disorder, and addiction. The discovery of novel and structurally diverse CRF1 receptor inhibitors becomes essential. In this study, we have performed molecular docking of CRF1R with the derivatives of 8-substituted-2-aryl-5-alkylaminoquinolines as CRF1R inhibitors. The antagonist molecules were optimized and docked into the binding site of the receptor. On analysing the docked complexes we have identified that the residues HIS214, THR215, ARG227, ARG1008, LYS1060 and ASP1061 are important in forming hydrogen bond with the inhibitors. Further studies on these residues could reveal important structural features required for the formation of CRF1R-inhibitor complex and thus in the discovery of novel and potent inhibitors.

Validation on the molecular docking efficiency of lipocalin family of proteins

  • Sokalingam, Sriram;Munussami, Ganapathiraman;Kim, Jung-Rae;Lee, Sun-Gu
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.293-300
    • /
    • 2018
  • Lipocalins are diverse group of small extracellular proteins found in various organisms. In this study, members of 10 non-homologous lipocalin-ligand crystal complex structures were remodeled using rigid and flexible ligand modes to validate the prediction efficiency of molecular docking simulation. The modeled ligand conformations indicated a high prediction accuracy in rigid ligand mode using cluster based analysis for most cases whereas the flexible ligand mode required further considerations such as ligand binding energy and RMSD for some cases. This in silico study is expected to serve as a platform in the screening of novel ligands against lipocalin family of proteins.

Flavonoids as Novel Therapeutic Agents Against Chikungunya Virus Capsid Protein: A Molecular Docking Approach

  • E. Vadivel;Gundeep Ekka;J. Fermin Angelo Selvin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.226-235
    • /
    • 2023
  • Chikungunya fever has a high morbidity rate in humans and is caused by chikungunya virus. There are no treatments available until now for this particular viral disease. The present study was carried out by selecting 19 flavonoids, which are available naturally in fruits, vegetables, tea, red wine and medicinal plants. The molecular docking of selected 19 flavonoids was carried out against the Chikungunya virus capsid protein using the Autodock4.2 software. Binding affinity analysis based on the Intermolecular interactions such as Hydrogen bonding and hydrophobic interactions and drug-likeness properties for all the 19 flavonoids have been carried out and it is found that the top four molecules are Chrysin, Fisetin, Naringenin and Biochanin A as they fit to the chikungunya protein and have binding energy of -8.09, -8.01, -7.6, and 7.3 kcal/mol respectively. This result opens up the possibility of applying these compounds in the inhibition of chikungunya viral protein.

Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis

  • Kumar, Satish;Jena, Lingaraja;Galande, Sneha;Daf, Sangeeta;Mohod, Kanchan;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.64-70
    • /
    • 2014
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The life-threatening infection caused by HPV demands the need for designing anticancerous drugs. In the recent years, different compounds from natural origins, such as carrageenan, curcumin, epigallocatechin gallate, indole-3-carbinol, jaceosidin, and withaferin, have been used as a hopeful source of anticancer therapy. These compounds have been shown to suppress HPV infection by different researchers. In the present study, we explored these natural inhibitors against E6 oncoprotein of high-risk HPV-16, which is known to inactivate the p53 tumor suppressor protein. A robust homology model of HPV-16 E6 was built to anticipate the interaction mechanism of E6 oncoprotein with natural inhibitory molecules using a structure-based drug designing approach. Docking analysis showed the interaction of these natural compounds with the p53-binding site of E6 protein residues 113-122 (CQKPLCPEEK) and helped the restoration of p53 functioning. Docking analysis, besides helping in silico validation of natural compounds, also helps understand molecular mechanisms of protein-ligand interactions.