• 제목/요약/키워드: Molecular Docking

검색결과 309건 처리시간 0.02초

Molecular docking to EGFR tyrosine kinase domain : Structural Validation against Crystal Structures

  • 장준영
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.126-130
    • /
    • 2016
  • Epidermal growth factor receptor(EGFR)는 HER family에 속하는 tyrosine kinase receptor로서 다양한 하류경로로 신호를 전달하여 세포 증식, 혈관 형성, 세포 사멸을 억제하는 역할을 한다. EGFR이 폐암의 형성에 중요한 역할을 하고 많은 상피세포 종양에서 비정상적으로 활성화됨에 따라 암 치료에 중요한 역할을 하고 있어 EGFR tyrosine kinase inhibitor(TKI)에 관한 많은 연구가 이루어졌다. 위와 같은 약 개발에 있어서 현재 가상 시뮬레이션을 통한 약 후보물질 개발이 진행되고 있다. 특히, Molecular docking 시뮬레이션은 기존의 실험적인 기술(X-ray crystallography, NMR)로는 연구하기가 어려웠던 protein과 ligand간의 상호작용을 예측하여 이에 대한 정보를 제공할 수 있다. 하지만, 우선적으로 Molecular docking 시뮬레이션은 정확한 validation을 기반으로 진행되어야 신뢰할 수 있는 정보를 얻을 수 있다. 따라서 이번 연구에서는 EDISON에서 제공하는 Dock 프로그램과 일반적으로 잘 알려진 Glide, Autodock 프로그램으로 protein data bank(PDB)에서 제공하는 EGFR wild type cocrystal을 redocking하는 방식을 통하여 최상위 rank pose의 RMSD 값을 통한 validation 성능을 비교함으로써 어떤 프로그램이 EGFR과 ligand 간의 결합예측을 하는데 있어서 보다 더 정확한 결과를 낼 수 있는지 알아보고자 하였고 시뮬레이션 결과 Autodock에서 가장 우수한 결과 값을 보여주었다.

  • PDF

Molecular Modeling of the Chiral Recognition of Propranolol Enantiomers by a β-Cyclodextrin

  • Kim, Hyun-myung;Jeong, Karp-joo;Lee, Sang-san;Jung, Seun-ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.95-98
    • /
    • 2003
  • Enantioselectivity of the propranolol on β-cyclodextrin was simulated by molecular modeling. Monte Carlo (MC) docking and molecular dynamics (MD) simulations were applied to investigate the molecular mechanism of enantioselective difference of both enantiomeric complexes. An energetic analysis of MC docking simulations coupled to the MD simulations successfully explains the experimental elution order of propranolol enantiomers. Molecular dynamics simulations indicate that average energy difference between the enantiomeric complexes, frequently used as a measure of chiral recognition, depends on the length of the simulation time. We found that, only in case of much longer MD simulations, noticeable chiral separation was observed.

소분자 도킹에서 탐색공간의 축소 방법 (Search Space Reduction Techniques in Small Molecular Docking)

  • 조승주
    • 통합자연과학논문집
    • /
    • 제3권3호
    • /
    • pp.143-147
    • /
    • 2010
  • Since it is of great importance to know how a ligand binds to a receptor, there have been a lot of efforts to improve the quality of prediction of docking poses. Earlier efforts were focused on improving search algorithm and scoring function in a docking program resulting in a partial improvement with a lot of variations. Although these are basically very important and essential, more tangible improvements came from the reduction of search space. In a normal docking study, the approximate active site is assumed to be known. After defining active site, scoring functions and search algorithms are used to locate the expected binding pose within this search space. A good search algorithm will sample wisely toward the correct binding pose. By careful study of receptor structure, it was possible to prioritize sub-space in the active site using "receptor-based pharmacophores" or "hot spots". In a sense, these techniques reduce the search space from the beginning. Further improvements were made when the bound ligand structure is available, i.e., the searching could be directed by molecular similarity using ligand information. This could be very helpful to increase the accuracy of binding pose. In addition, if the biological activity data is available, docking program could be improved to the level of being useful in affinity prediction for a series of congeneric ligands. Since the number of co-crystal structures is increasing in protein databank, "Ligand-Guided Docking" to reduce the search space would be more important to improve the accuracy of docking pose prediction and the efficiency of virtual screening. Further improvements in this area would be useful to produce more reliable docking programs.

Prediction of Chiral Discrimination by β-Cyclodextrins Using Grid-based Monte Carlo Docking Simulations

  • Choi, Young-Jin;Kim, Dong-Wook;Park, Hyung-Woo;Hwang, Sun-Tae;Jeong, Karp-Joo;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.769-775
    • /
    • 2005
  • An efficiency of Monte Carlo (MC) docking simulations was examined for the prediction of chiral discrimination by cyclodextrins. Docking simulations were performed with various computational parameters for the chiral discrimination of a series of 17 enantiomers by $\beta$-cyclodextrin ($\beta$-CD) or by 6-amino-6-deoxy-$\beta$-cyclodextrin (am-$\beta$-CD). A total of 30 sets of enantiomeric complexes were tested to find the optimal simulation parameters for accurate predictions. Rigid-body MC docking simulations gave more accurate predictions than flexible docking simulations. The accuracy was also affected by both the simulation temperature and the kind of force field. The prediction rate of chiral preference was improved by as much as 76.7% when rigid-body MC docking simulations were performed at low-temperatures (100 K) with a sugar22 parameter set in the CHARMM force field. Our approach for MC docking simulations suggested that the conformational rigidity of both the host and guest molecule, due to either the low-temperature or rigid-body docking condition, contributed greatly to the prediction of chiral discrimination.

Identification of a Potential Anticancer Target of Danshensu by Inverse Docking

  • Chen, Shao-Jun;Ren, Ji-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.111-116
    • /
    • 2014
  • Objective: To study potential targets of Danshensu via dual inverse docking. Method: PharmMapper and idTarget servers were used as tools, and the results were checked with the molecular docking program autodock vina in PyRx 0.8. Result: The disease-related target HRas was rated top, with a pharmacophore model matching well the molecular features of Danshensu. In addition, docking results indicated that the complex was also matched in terms of structure, H-bonds, and hydrophobicity. Conclusion: Dual inverse docking indicates that HRas may be a potential anticancer target of Danshensu. This approach can provide useful information for studying pharmacological effects of agents of interest.

P56 LCK Inhibitor Identification by Pharmacophore Modelling and Molecular Docking

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.200-206
    • /
    • 2007
  • Pharmacophore models for lymphocyte-specific protein tyrosine kinase (P56 LCK) were developed using CATALYST HypoGen with a training set comprising of 25 different P56 LCK inhibitors. The best quantitative pharmacophore hypothesis comprises of one hydrogen bond acceptor, one hydrogen bond donor, one hydrophobic aliphatic and one ring aromatic features with correlation coefficient of 0.941, root mean square deviation (RMSD) of 0.933 and cost difference (null cost-total cost) of 66.23. The pharmacophore model was validated by two methods and the validated model was further used to search databases for new compounds with good estimated LCK inhibitory activity. These compounds were evaluated for their binding properties at the active site by molecular docking studies using GOLD software. The compounds with good estimated activity and docking scores were evaluated for physiological properties based on Lipinski's rules. Finally 68 compounds satisfied all the properties required to be a successful inhibitor candidate.

A Short Review on the Application of Combining Molecular Docking and Molecular Dynamics Simulations in Field of Drug Discovery

  • Kothandan, Gugan;Ganapathy, Jagadeesan
    • 통합자연과학논문집
    • /
    • 제7권2호
    • /
    • pp.75-78
    • /
    • 2014
  • Computer-aided drug design uses computational chemistry to discover, enhance, or study drugs and related biologically active molecules. It is now proved to be effective in reducing costs and speeding up drug discovery. In this short review, we discussed on the importance of combining molecular docking and molecular dynamics simulation methodologies. We also reviewed the importance of protein flexibility, refinement of docked complexes using molecular dynamics and the use of free energy calculations for the calculation of accurate binding energies has been reviewed.

In-vitro Antimalarial Investigations and Molecular Docking Studies of Compounds from Trema orientalis L. (blume) Leaf Extract

  • Samuel, Babatunde Bolorunduro;Oluyemi, Wande Michael;Okedigba, Ayoyinka Oluwaseun
    • Natural Product Sciences
    • /
    • 제28권2호
    • /
    • pp.45-52
    • /
    • 2022
  • The identification of Plasmodium falciparum enoyl acyl-carrier protein reductase (pfENR) is considered as a potential biological target against malaria. Trema orientalis is considered a rich source of phytochemicals useful in malaria treatment. This study evaluated the in-vitro inhibitory activity of the extract and isolated compounds of T. orientalis leaf; the isolated compounds and the analogues of the most active compound were subjected to in-silico molecular docking studies on pfENR. The methanolic extract of T. orientalis was subjected to repeated chromatographic separation which led to the isolation of some compounds. The isolated compounds from the plant were examined for their antimalarial activity using β-hematin inhibition assay. Virtual screening via molecular docking and ADMET studies were conducted to gain insight into the mechanism of binding of ligand and to identify effective pfENR inhibitors. The isolated compounds and the analogues of the most active isolates were gotten from PubChem library for use in docking study. Hexacosanol and β-sitosterol showed inhibition of the β-hematin formation. The docking results showed that hexacosanol, β-sitosterol and the analogues of β-sitosterol displayed binding energy ranging between -6.1 kcal/mol and -11.6 kcal/mol. Sitosterol glucoside has the highest docking score. Some of the ligands showed more binding affinity than known bioactive compounds used as reference. Analogues of β-sitosterol has been shown to be potential inhibitors of pfENR, therefore, the findings from this study suggest that sitosterol glucoside and ergosterol peroxide could act as antimalarial agents after further lead optimisation investigations.

A Potential Target of Tanshinone IIA for Acute Promyelocytic Leukemia Revealed by Inverse Docking and Drug Repurposing

  • Chen, Shao-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권10호
    • /
    • pp.4301-4305
    • /
    • 2014
  • Tanshinone IIA is a pharmacologically active ingredient extracted from Danshen, a Chinese traditional medicine. Its molecular mechanisms are still unclear. The present study utilized computational approaches to uncover the potential targets of this compound. In this research, PharmMapper server was used as the inverse docking tool andnd the results were verified by Autodock vina in PyRx 0.8, and by DRAR-CPI, a server for drug repositioning via the chemical-protein interactome. Results showed that the retinoic acid receptor alpha ($RAR{\alpha}$), a target protein in acute promyelocytic leukemia (APL), was in the top rank, with a pharmacophore model matching well the molecular features of Tanshinone IIA. Moreover, molecular docking and drug repurposing results showed that the complex was also matched in terms of structure and chemical-protein interactions. These results indicated that $RAR{\alpha}$ may be a potential target of Tanshinone IIA for APL. The study can provide useful information for further biological and biochemical research on natural compounds.

Synthesis, Antioxidant and Molecular Docking Studies of (-)-Catechin Derivatives

  • Kumar, Deepak;Kumar, Raj;Ramajayam, R.;Lee, Keun Woo;Shin, Dong-Soo
    • 대한화학회지
    • /
    • 제65권2호
    • /
    • pp.106-112
    • /
    • 2021
  • 12 kinds of (-)-catechin derivatives were designed and synthesized. The catechin derivatives were evaluated their antioxidant activities using DPPH method. Most of them showed good antioxidant activity, particularly compounds 1d, 1e and 1j exhibited more activity than butylated hydroxytoluene (BHT). Molecular docking studies for compounds 1d, 1e and 1j with STAT1 showed not only sufficent characteristics binding cavity but also agreement with the observed biological activity. Acording to docking results, the compounds showed greater than hydrogen bonding, hydrophobic interactions, electrostatic interactions, and Van der Waals interactions as compared to the reference compound. They formed hydrogen bonds with important residues such as Lys566, His568, Leu570, and Phe644. The compounds showed a novel hydrogen bonding interaction with Arg649, which was not reported previously. Our results might suggest the compounds could serve as a novel anti-oxidant agent.