• Title/Summary/Keyword: Molecular Diagnostic Techniques

Search Result 62, Processing Time 0.026 seconds

Recent Advances in Nuclear Medicine Imaging Instrumentation (핵의학 영상기기의 최근 진보)

  • Jung, Jin-Ho;Choi, Yong;Hong, Key-Jo;Min, Byung-Jun;Hu, Wei;Kang, Ji-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.98-111
    • /
    • 2008
  • This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.

Integrated bioinformatics analysis of validated and circulating miRNAs in ovarian cancer

  • Dogan, Berkcan;Gumusoglu, Ece;Ulgen, Ege;Sezerman, Osman Ugur;Gunel, Tuba
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2022
  • Recent studies have focused on the early detection of ovarian cancer (OC) using tumor materials by liquid biopsy. The mechanisms of microRNAs (miRNAs) to impact OC and signaling pathways are still unknown. This study aims to reliably perform functional analysis of previously validated circulating miRNAs' target genes by using pathfindR. Also, overall survival and pathological stage analyses were evaluated with miRNAs' target genes which are common in the The Cancer Genome Atlas and GTEx datasets. Our previous studies have validated three downregulated miRNAs (hsa-miR-885-5p, hsa-miR-1909-5p, and hsa-let7d-3p) having a diagnostic value in OC patients' sera, with high-throughput techniques. The predicted target genes of these miRNAs were retrieved from the miRDB database (v6.0). Active-subnetwork-oriented Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by pathfindR using the target genes. Enrichment of KEGG pathways assessed by the analysis of pathfindR indicated that 24 pathways were related to the target genes. Ubiquitin-mediated proteolysis, spliceosome and Notch signaling pathway were the top three pathways with the lowest p-values (p < 0.001). Ninety-three common genes were found to be differentially expressed (p < 0.05) in the datasets. No significant genes were found to be significant in the analysis of overall survival analyses, but 24 genes were found to be significant with pathological stages analysis (p < 0.05). The findings of our study provide in-silico evidence that validated circulating miRNAs' target genes and enriched pathways are related to OC and have potential roles in theranostics applications. Further experimental investigations are required to validate our results which will ultimately provide a new perspective for translational applications in OC management.

Comparison of Positron Emission Tomography(PET) imaging-based initial in vivo pharmacokinetics by administration routes of [18F]FDG

  • Yiseul Choi;Jang Woo Park;Eun Sang Lee;Ok-Sun Kim;Hye Kyung Chung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.99-103
    • /
    • 2021
  • In this study, the initial in vivo pharmacokinetic changes according to the routes of drug administration were investigated using bioimaging techniques. The purpose of this study was to quantify the degree of distribution of each major organ in normal mice over time by acquiring Positron Emission Tomography/Computed Tomography images while administering routes F-18 fluorodeoxyglucose such as intravenous, intraperitoneal and per oral, a representative diagnostic radiopharmaceutical. Dynamic Positron Emission Tomography images were acquired for 90 minutes after drug administration. Radioactivity uptake was calculated for major organs using the PMOD program. In the case of intravenous administration, it was confirmed that it spread quickly and evenly to major organs. Compared to intravenous administration, intraperitoneal administration was about three times more absorbed and distributed in the liver and intestine, and it was showed that the amount excreted through the bladder was more than twice. In the case of oral administration, most stayed in the stomach, and it was showed that it spread slowly throughout the body. In comparison with intravenous administration, it was presented that the distribution of kidneys was more than 9 times and the distribution of bladder was 66% lower. Since there is a difference in the initial in vivo distribution and excretion of each administration method, we confirmed that the determination of the administration route is important for in vivo imaging evaluation of new drug candidates.

The detection of Toxoplasma gondii ME49 infections in BALB/c mice using various techniques

  • Hae-Ji Kang;Jie Mao;Min-Ju Kim;Keon-Woong Yoon;Gi-Deok Eom;Ki-Back Chu;Eun-Kyung Moon;Fu-Shi Quan
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.418-427
    • /
    • 2023
  • Toxoplasma gondii infections are primarily diagnosed by serological assays, whereas molecular and fluorescence-based techniques are garnering attention for their high sensitivity in detecting these infections. Nevertheless, each detection method has its limitations. The toxoplasmosis detection capabilities of most of the currently available methods have not been evaluated under identical experimental conditions. This study aimed to assess the diagnostic potential of enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and immunofluorescence (IF) in BALB/c mice experimentally infected with various doses of T. gondii ME49. The detection of toxoplasmosis from sera and brain tissues was markedly enhanced in mice subjected to high infection doses (200 and 300 cysts) compared to those subjected to lower doses (10 and 50 cysts) for all the detection methods. Additionally, increased B1 gene expression levels and cyst sizes were observed in the brain tissues of the mice. Importantly, IHC, IF, and ELISA, but not RT-PCR, successfully detected T. gondii infections at the lowest infection dose (10 cysts) in the brain. These findings may prove beneficial while designing experimental methodologies for detecting T. gondii infections in mice.

Development of Broad-range and Specific 16S rRNA PCR for Use in Routine Diagnostic Clinical Microbiology (임상미생물 검출을 위한 광대한 범위와 특이도를 가지는 16S rRNA PCR법 개발)

  • Kim, Hyun-Chul;Kim, Yun-Tae;Kim, Hyogyeong;Lee, Sanghoo;Lee, Kyoung-Ryul;Kim, Young-Jin
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2014
  • Broad-range and specific 16S rRNA gene PCR is used for detection and identification of bacterial pathogens in clinical specimens from patients with a high suspicion for infection. We describe the development of a broad-range and specific PCR primer, based on bacterial 16S rRNA, for use in routine diagnostic clinical microbiology services. The primers were designed by using conservative regions of 16S rRNA sequences from 10 strains. Ninety-eight clinical strains were isolated from clinical patient specimens. A total of 98 strains of bacteria were identified by phenotypic methods; PCR with newly designed primers and universal primers. All purified PCR products were sequenced using both forward and reverse primers on an automated DNA analyzer. In this study, we evaluated the usefulness of the newly designed primers and the universal primers for the detection of bacteria, and both these techniques were compared with phenotypic methods for bacteria detection. When we also tested 98 strains of clinical isolates with newly designed primers, about 778 bp DNA fragments were amplified and identified from all strains. Of the 98 strains, 94 strains (95.9%) correspond in comparison with phenotypic methods. The newly designed primers showed that the identities of 98 (100%) strains were the same as those obtained by universal PCR primers. The overall agreement between the newly designed primers and universal primers was 100%. The primer set was designed for rapid, accurate, and cheap identification of bacterial pathogens. We think the newly designed primer set is useful for the identification of pathogenic bacteria.

Diagnostic Significance of the Serologic Test Using Multiple Antigens of Mycobacterium Tuberculosis by ELISA (다양한 특이결핵항원을 이용한 결핵항체 검사(ELISA)의 진단적 유용성)

  • Kim, Dae-Yun;Choi, In-Hwan;Park, Seung-Kyu;Cho, Shang-Rae;Song, Sun-Dae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.6
    • /
    • pp.757-767
    • /
    • 1999
  • Background: Diagnosis by smear and/or cultures of the Mycobacterium tuberculosis from body fluid or biopsy specimen is "Gold standard". However the sensitivity of the direct microscopy is relatively low and culture of mycobacteria is time consuming. Despite an explosion in the techniques of rapid identification of mycobacteria by molecular genetic means, it is laborious and expensive and then rapid, inexpensive serodiagnosis is interested in diagnosis of tuberculosis. But sensitivity and specificity of known serologic antigen is not full sufficient level and then new antigen develop and combination cocktails of new developed antigens by ELISA are needed. Method: To compare the efficacy of different mycobacterial specific antigen and to assess the applicability of the combination of several different antigens in the diagnosis of tuberculosis, five ELISA tests derived 14KDa, 16KDa, 19KDa, 23KDa, 38KDa were evaluated in 57 active pulmonary patient and 24 inactive post-therapy follow up patient and 48 normal control. Results: The optical densities of ELISA test with 14KDa, 16KDa, 19KDa, 23KDa, 38KDa were significantly higher in active tuberculosis cases than in normal control(P<0.001, P<0.001, P<0.027, P<0.001, P<0.001) and those with 16KDa, 38KDa were significant higher in active tuberculosis cases than in inactive post-therapy follow up cases(P<0.01. P<0.001) and those of 14KDa, 16KDa, 23KDa, 38KDa were significant higher in inactive post-therapy follow up cases than in normal control(P<0.008. P<0.01. P<0.006. P<0.001). The sensitivity of 14KDa, 16KDa, 19KDa, 23KDa, 38KDa in active pulmonary patient cases was 42.1%, 43.9%, 15.8%, 28.0%, 70.2%, respectively and the specificity of 14KDa, 16KDa, 19KDa, 23KDa, 38KDa in active pulmonary patient cases was 95.8%, 95.8%, 91.7%, 89.6%, 93.8%, respectively. The sensitivity and specificity of combination 38KDa with 16KDa was 87% and 93.7%. Conclusion: The sensitivity and specificity of new antigens for serodiagnosis of the tuberculosis still remains limited at around 70%, which makes its a poor diagnostic tool for disease confirmation. A combination of cocktail antigens provided by cut-off value adjustment for serodiagnosis of tuberculosis some improved diagnostic yield than single antigen serologic test.

  • PDF

Layered Double Hydroxide Nanoparticles for Bio-Imaging Applications (LDH 나노입자 기반의 바이오 이미징 소재)

  • Jin, Wenji;Ha, Seongjin;Lee, Dongki;Park, Dae-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.445-454
    • /
    • 2019
  • Layered double hydroxides (LDHs) nanoparticles have emerged as novel nanomaterials for bio-imaging applications due to its unique layered structure, physicochemical properties, and good biocompatibility. Bio-imaging is one of the most important fields for medical applications in clinical diagnostics and therapeutics of various diseases. Enhanced diagnostic techniques are needed to realize new paradigm for next-generation personalized medicine through nanoscale materials. When nanotechnology is introduced into bio-imaging system, nanoparticle probes can endow imaging techniques with enhanced ability to obtain information about biological system at the molecular level. In this review, we summarize structural features of LDH nanoparticles with current issues of bio-imaging system. LDH nanoparticle probes are also discussed through in vitro as well as in vivo studies in various bio-imaging techniques including fluorescence imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), and computed X-ray tomography (CT), which will have the potential in the development of the advanced nanoparticles with high sensitivity and selectivity.

Role of $^{18}F$-fluoro-2-deoxyglucose Positron Emission Tomography in Gastric GIST: Predicting Malignant Potential Pre-operatively

  • Park, Jeon-Woo;Cho, Chang-Ho;Jeong, Duck-Su;Chae, Hyun-Dong
    • Journal of Gastric Cancer
    • /
    • v.11 no.3
    • /
    • pp.173-179
    • /
    • 2011
  • Purpose: It is difficult to obtain biopsies from gastrointestinal stromal tumors (GISTs) prior to surgery because GISTs are submucoal tumors, despite being the most common nonepithelial neoplasms of the gastrointestinal tract. Unlike anatomic imaging techniques, PET-CT, which is a molecular imaging tool, can be a useful technique for assessing tumor activity and predicting the malignant potential of certain tumors. Thus, we aimed to evaluate the usefulness of PET-CT as a pre-operative prognostic factor for GISTs by analyzing the correlation between the existing post-operative prognostic factors and the maximum SUV uptake (SUVmax) of pre-operative 18F-fluoro-2-deoxyglucose (FDG) PET-CT. Materials and Methods: The study was conducted on 26 patients who were diagnosed with gastric GISTs and underwent surgery after being examined with pre-operative FDG PET-CT. An analysis of the correlation bewteen (i) NIH risk classification and the Ki-67 proliferation index, which are post-operative prognostic factors, and (ii) the SUVmax of PET-CT, which is a pre-operative prognostic factor, was performed. Results: There were significant correlations between (i) SUVmax and (ii) Ki-67 index, tumor size, mitotic count, and NIH risk group (r=0.854, 0.888, 0.791, and 0.756, respectively). The optimal cut-off value for SUVmax was 3.94 between "low-risk malignancy" and "high-risk malignancy" groups. The sensitivity and specificity of SUVmax for predicting the risk of malignancy were 85.7% and 94.7%, respectively. Conclusions: The SUVmax of PET-CT is associated with Ki-67 index, tumor size, mitotic count, and NIH classification. Therefore, it is believed that PET-CT is a relatively safe, non-invasive diagnostic tool for assessing malignant potential pre-operatively.

Evaluation of the cost-effectiveness of ASF detection with or without the use of on-field tests in different scenarios, in Sardinia

  • Cappai, Stefano;Loi, Federica;Rolesu, Sandro;Coccollone, Annamaria;Laddomada, Alberto;Sgarangella, Francesco;Masala, Sergio;Bitti, Giuseppe;Floris, Vincenzo;Desini, Pietro
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.14.1-14.10
    • /
    • 2020
  • African swine fever (ASF) is a highly contagious disease of domestic pigs and wild boars (WBs). Without a vaccine, early antibody and antigen detection and rapid diagnosis are crucial for the effective prevention of the disease and the employment of control measures. In Sardinia, where 3 different suid populations coexisted closely for a long time, the disease persists since 1978. The recent ASF eradication plan involves more stringent measures to combat free-ranging pigs and any kind of illegality in the pig industry. However, critical issues such as the low level of hunter cooperation with veterinary services and the time required for ASF detection in the WBs killed during the hunting season still remain. Considering the need to deliver true ASF negative carcasses as early as possible, this study focuses on the evaluation and validation of a duplex pen-side test that simultaneously detects antibodies and antigens specific to ASF virus, to improve molecular diagnosis under field conditions. The main goal was to establish the specificity of the two pen-side tests performed simultaneously and to determine their ability to detect the true ASF negative carcasses among the hunted WBs. Blood and organ samples of the WBs hunted during the 2018/2019 hunting seasons were obtained. A total of 160 animals were tested using the pen-side kit test; samples were collected for virological and serological analyses. A specificity of 98% was observed considering the official laboratory tests as gold standards. The new diagnostic techniques could facilitate faster and cost-effective control of the disease.

Hair microscopy: an easy adjunct to diagnosis of systemic diseases in children

  • Dharmagat Bhattarai;Aaqib Zafar Banday;Rohit Sadanand;Kanika Arora;Gurjit Kaur;Satish Sharma;Amit Rawat
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.18.1-18.12
    • /
    • 2021
  • Hair, having distinct stages of growth, is a dynamic component of the integumentary system. Nonetheless, derangement in its structure and growth pattern often provides vital clues for the diagnosis of systemic diseases. Assessment of the hair structure by various microscopy techniques is, hence, a valuable tool for the diagnosis of several systemic and cutaneous disorders. Systemic illnesses like Comel-Netherton syndrome, Griscelli syndrome, Chediak Higashi syndrome, and Menkes disease display pathognomonic findings on hair microscopy which, consequently, provide crucial evidence for disease diagnosis. With minimal training, light microscopy of the hair can easily be performed even by clinicians and other health care providers which can, thus, serve as a useful tool for disease diagnosis at the patient's bedside. This is especially true for resource-constrained settings where access and availability of advanced investigations (like molecular diagnostics) is a major constraint. Despite its immense clinical utility and non-invasive nature, hair microscopy seems to be an underutilized diagnostic modality. Lack of awareness regarding the important findings on hair microscopy may be one of the crucial reasons for its underutilization. Herein, we, therefore, present a comprehensive overview of the available methods for hair microscopy and the pertinent findings that can be observed in various diseases.