• Title/Summary/Keyword: Molecular Communication

Search Result 229, Processing Time 0.029 seconds

Channel Capacity Analysis of DNA-based Molecular Communication with Length Encoding Mechanism

  • Xie, Jialin;Liu, Qiang;Yang, Kun;Lin, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2923-2943
    • /
    • 2021
  • The double helix structure of DNA makes it diverse, stable and can store information with high density, and these characteristics are consistent with the requirements of molecular communication for transport carriers. In this paper, a specific structure of molecular communication system based on DNA length coding is proposed. Transmitter (Tx) adopts the multi-layer golden foil design to control the release of DNA molecules of different lengths accurately, and receiver (Rx) adopts an effective and sensitive design of nanopore, and the biological information can be converted to the electric signal at Rx. The effect of some key factors, e.g., the length of time slot, transmission distance, the number of releasing molecules, the priori probability, on channel capacity is demonstrated exhaustively. Moreover, we also compare the transmission capacity of DNA-based molecular communication (DNA-MC) system and concentration-based molecular communication (MC) system under the same parameter setting, and the peak value of capacity of DNA-MC system can achieve 0.08 bps, while the capacity of MC system remains 0.025 bps. The simulation results show that DNA-MC system has obvious advantages over MC system in saving molecular resources and improving transmission stability.

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

Optimizations of Multi-hop Cooperative Molecular Communication in Cylindrical Anomalous-Diffusive Channel

  • Xuancheng Jin;Zhen Cheng;Zhian Ye;Weihua Gong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1075-1089
    • /
    • 2024
  • In this paper, the optimizations of multi-hop cooperative molecular communication (CMC) system in cylindrical anomalous-diffusive channel in three-dimensional enviroment are investigated. First, we derive the performance of bit error probability (BEP) of CMC system under decode-and-forward relay strategy. Then for achieving minimum average BEP, the optimization variables are detection thresholds at cooperative nodes and destination node, and the corresponding optimization problem is formulated. Furthermore, we use conjugate gradient (CG) algorithm to solve this optimization problem to search optimal detection thresholds. The numerical results show the optimal detection thresholds can be obtained by CG algorithm, which has good convergence behaviors with fewer iterations to achieve minimized average BEP compared with gradient decent algorithm and Bisection method which are used in molecular communication.

A Study on the Decoding of Hamming Codes using Soft Values on the Molecular Communication Channel (분자통신 채널에서 소프트 값을 이용한 해밍부호의 복호에 대한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.338-343
    • /
    • 2020
  • In this paper, it was shown that the decoding method of Hamming codes using soft values can be applied to molecular communication channels. A soft value criterion that can be used for decoding of Hamming codes for a molecular communication channel was proposed, and it has been shown through simulation that the decoding method using these values can improve reliability even in the molecular communication channel. A diffusion-based molecular communication channel was assumed, and information symbols were transmitted using BCSK modulation. After demodulating the number of molecules absorbed by the receiver at each symbol interval with an appropriate threshold, the number of molecules is no longer used. In this paper, the BER performance of the decoder was improved by utilizing information on the number of molecules that are no longer used as soft values in the decoding process. Simulation was performed to confirm the improvement in BER performance. When the number of molecules per bit is 600, the error rate of the Hamming code (15,11) was improved about 5.0×10-3 to the error rate of the BCSK system without the Hamming code. It can be seen that the error rate of (15,11) Hamming code with the soft values was improved to the same extent. In the case of (7,4) Hamming code, the result is similar to that of (15,11) Hamming code. Therefore, it can be seen that the BER performance of the Hamming code can be greatly improved even in the molecular communication channel by using the difference between the number of molecules absorbed by the receiver and the threshold value as a soft value.

The Effect of Changing Molecular Weight of Rosin Modified Phenol Resin on Physical Properties of Litho Printing Inks (Rosin변성 phenol수지의 분자량 변화에 따른 평판인쇄 잉크의 물성변화에 관한 연구)

  • SungBinKim
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.145-157
    • /
    • 1994
  • Litho printing ink vehicles based on rosin modified phenolic are faster drying, have better durability, are harder and glosser and have greater resistance to water than ones based on ester gums. Ink-Water balance and rheological properties are important in litho printing process. These physical properties is concerned with molecular weight of Resin to use vehicle. So this paper was studied about the effects of changing molecular weight of Rosin modified phenolic on surface tension, viscosity, pseudoplasticity and printability of Litho Inks. The results were as follows. 1) The surface tension of model inks depended on the molecular \veight of the resin : Dispersion componnent of ink increase but non dispersion component decrease as molecular weight of Resin increase. 2) Water pick-up of litho ink is more fast balance, using low molecular weight of Resin. 3) Viscosity, Yield value and Newtonian value of model inks increase as molecular weight of Resin increase. 4) The litho ink prepared with the modified phenolic of which molecular weight is about 20000 showed the highest printing density and gloss.

  • PDF

A Study on the Color Reproduction of Halftone Image by used Factor N and Process Ink Characteristics (Factor N와 잉크특성을 고려한 망점화상의 색재현예측에 관한 연구)

  • 김성근
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.13-27
    • /
    • 1994
  • Litho printing ink vehicles based on rosin modified phenolic are faster drying, have better durability, are harder and glosser and have greater resistance to water than ones based on ester gums. Ink-Water balance and rheological properties are important in litho printing process. These physical properties is concerned with molecular weight of Resin to use vehicle. So this paper was studied about the effects of changing molecular weight of Rosin modified phenolic on surface tension, viscosity, pseudoplasticity and printablility of Litho Inks. The results were as follows. 1) The surface tension of model inks depended on the molecular weight of the resin : Dispersion componnent of ink increase but non dispersion component decrease as molecular weight of Resin increase. 2) Water pick-up of litho ink is more fast balance, using low molecular weight of Resin. 3) Viscosity, Yield value and Newtonian value of model inks increase as molecular weight of Resin increase. 4) The litho ink prepared with the modified phenolic of which molecular weight is about 20000 showed the highest printing density and gloss.

  • PDF

Molecular Weight Distribution of Rosin Modified Phenol Resin Used in Media for Printing Varnishes. (인쇄잉크용 로진변성 페놀수지의 분자량 분포에 관한 연구)

  • SungBinKim
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 1989
  • Modified phenolics can have a retarding effect on the gelation of wood oil. Modified phenolic resins can be used in media for paint, varnishes, primers, overprinting varnishes, litho, letterpress and rotogravure inks. Varnishes based on rosin phenolic are faster drying, have better durability, are harder and glosser, and have greater resistance to water than ones based on ester gums. These physical properties is concerned with molecular weight distribution of rosin modified phenol resin. This paper was studied about molecular weight distribution of rosin phenolics which were prepared between $130~250^{\circ}C$. The results were as follows: 1) Average molecular weights inereased with increasing reaction temperature. 2) $M_w/M_n$ were from 3.43 to 46.44 with increasing reaction temperature and so the molecular weight distributions were changed from random distribution to broad distribution. 3) The relation ship between intrinsic viscosity and weight average molecular weight was follows: $[{\;}{\;}]={\;}1{\times}{\;}10^{-6}M_w,{\;}M_w=M_w$ 4) Esterification reaction between the acid group of rosin and polyol was started about $230^{\circ}C$$.

  • PDF

Quorum Sensing-Based Multiple Access Networks

  • Tissera, Surani;Choe, Sangho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.750-753
    • /
    • 2016
  • Quorum sensing (QS) is a bacterium-to-bacterium cell communication mechanism allowing bio-cell network construction but such mechanism is not well defined yet. We construct a QS-based multiple access network (MAN) and then numerically analyse its average uplink channel capacity as well as BER performance over diffusion-based 3-D molecular communication channels.

The efect of freeness and paper physical properties treated with high and low molecular weight cellulase in the different surface pore sized fibers (Cellulase의 분자량과 섬유소의 표면공극 상이성이 여수도 및 종이의 강도적 특성에 미치는 영향)

  • 김병현;신종순;강영립;어영호
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.141-155
    • /
    • 2000
  • To examine how the difference of molecular weight distribution of cellulase influenced the beating process according to surface pore size of the fiber, high molecular weight enzyme and low one were applied to soft wood pulp, hard wood pulp, cotton linter pulp. Some enzymes with the distribution of low molecular weight penetrated into cellulose in the proportion of surface pore size and the results were negative as like : the low viscosity, decrease of refining Yield, decrease of fine fibers content and so on. But in cotton linter pulp in the small surface area, the fiber softness was increased and it had a positive result that the paper intensity was high. Other enzymes with the distribution of high molecular weight had an enzyme reaction on the most surfaces of cellulose. They were effective in eliminating the fuzz of hydrophile fine fibers and the freeness was increased.

  • PDF