• Title/Summary/Keyword: Molecular Characteristics

Search Result 2,994, Processing Time 0.028 seconds

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

Process Optimization of Meat Protein Hydrolysate of Ogae Wings by Response Surface Methodology and Its Characteristics Analysis (표면반응분석을 이용한 오계 날개육 단백질 가수분해 최적 생산 공정 개발과 생산물의 특성 분석)

  • Kim, A Yeon;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.293-303
    • /
    • 2016
  • Protein hydrolysate that shows physiological function such as antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity has been known as playing important role like hormone. This study was performed to optimize the hydrolysis of the wing's meat of Yosan-Ogae by a commercial protease. The ranges of processes were the reaction temperature of 40 to $60^{\circ}C$, pH 6 to 8, and enzyme concentration 1 to 3%(w/v). As a result, the optimization of process was determined at temperature of $48-50^{\circ}C$, pH of 7.0-7.2, and enzyme concentration of 3%(w/v), and degree of hydrolysis was 68 to 69% at above conditions. The molecular weight of hydrolysate was distributed to 500-1,200 Da and showed typical peptides. The amino acids of peptides showing presumably antioxidant activity such as histidine, proline, methionine, cystein, tyrosine, tryptophan, phenylalanine comprised about 43.07%. The glutamic acid was 13.6%. Therefore, we expect that those products are useful as functional food ingredients.

Decomposition Characteristics of Raw Rubber and Tire by Thermal Degradation Process (열분해 공정을 이용한 원료고무와 타이어의 분해 특성)

  • Kim, Won-Il;Kim, Hyung-Jin;Jung, Soo-Kyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1052-1060
    • /
    • 1999
  • Tire and raw material of tire, i.e., SBR were degraded using pyrolysis process. The yield of pyrolytic oil was increased and that of gas was decreased with increase of operating temperature in pyrolysis. And the yield of pyrolytic oil was increased and that of gas and char was decreased with increase of heating rate. The maximum oil yields of SBR and tire were 86% and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C/min$. The number average molecular weight ranges of SBR and tire were 740~2486, 740~1719, and the calorific value of SBR and tire was 39~40 kJ/g. The oil components were consisted of mostly 50 aromatic compounds. The particle size was decreased and the surface area was increased with increase of operating temperature, and the BET surface area was $47{\sim}63m^2/g$. The optimum condition of pyrolysis was the temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$, and the reactor was continuously purged with inert gas to sweep the evolved gases from the reaction zone.

  • PDF

Association Study Analysis of Cluster-of-Differentiation Antigen 9 (CD9) Gene Polymorphism (g.358A>T) for Duroc Boar Post-thawed Semen Motility and Kinematic Characteristics

  • Cho, Eun-Seok;Sa, Soo-Jin;Kim, Ki-Hyun;Lee, Mi-Jin;Ko, Jun-Ho;Kim, Young-Ju;Seol, Kuk-Hwan;Hong, Joon-ki;Kim, Kwang-Sik;Kim, Yong-Min;Woo, Jae-Seok
    • Journal of Embryo Transfer
    • /
    • v.30 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Cryopreservation of boar semen is continually researched in reproductive technologies and genetic resource banking in breed conservation. For evaluating the boar semen quality, sperm motility (MOT) is an important parameter because the movement of spermatozoa indicates active metabolism, membrane integrity and fertilizing capacity. Various researches have been trying to improve the quality of semen post-thawed in boar. Recently, polymorphism (g.358A>T) of cluster-of-differentiation antigen 9 (CD9) gene reported to be significant association with MOT. Also, CD9 gene was expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as candidate gene for boar semen. This study was conducted to evaluate the pig SNP (g.358A>T) of CD9 gene as a positional controlling for semen parameters of post-thawed boar semen. To results, the g.358A>T SNP of the CD9 gene was significantly associated with the traits such as MOT, curve linear velocity, straight line velocity, average path velocity and amplitude of lateral head displacement. Particularly, the g.358A>T SNP significantly has the highest association with MOT and animals with AA genotype (p<0.001). Therefore, we suggest that the g.358A>T in the intron 6 region of the porcine CD9 may be used as a molecular marker for Duroc boar Post-thawed semen quality, although its functional effect was not defined yet.

Purification and Characterization of Chitinase from Antagonistic Bacteria Pseudomonas sp. 3098. (생물방제균 Pseudomonas sp. 3098이 생산하는 Chitinase의 정제 및 특성)

  • 이종태;김동환;도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.515-522
    • /
    • 1998
  • Plant root rotting fungi, Fusarium solani are suppressed their growth by the chitinase which is produced from the antagonistic soil bacteria. The chitinase producable antagonistic bacterium Pseudomonas sp. 3098 was selected as a powerful biocontrol agent of F. solani from ginseng rhizosphere. The antagonistic Pseudomonas sp. 3098 was able to produce a large amount of extracellular chitinase which is key enzyme in the decomposition of fusarial hypal walls. The chitinase was purified from cultural filtrate of Pseudomonas sp. 3098 by the procedure of ammonium sulfate precipitation, anion exchange chromatography, gel filtration on Bio-Gel P-100, and 1st and 2nd hydroxyapatite chromatography. The molecular mass of the purified enzyme was ca. 45 kDa on SDS-FAGE. The optimal pH and temperature for the activity of purified chitinase were 5.0 and 45$^{\circ}C$, respectively. The enzyme was stable in pH range of 5.0 to 9.0 up to 5$0^{\circ}C$ The enzyme was significantly inhibited by metal compounds such as FeCl$_2$, AgNO$_3$ and HgCl$_2$, and was slightly inhibited by p-CMB, iodoacetic acid, urea, 2,4-DNP and EDTA. The enzyme had ability of digestion on colloidal chitin and chitin from shrimp shell, but could not digest chitosan and chitin from crab shell. Km value of the enzyme was 0.11% on colloidal chitin, and the maximum hydrolysis rate of the enzyme was 34% on colloidal chitin.

  • PDF

Characteristics of $\beta$-Agarase Produced by arine Bacterium Bacillus cereus ASK202 (해양세균 Bacillus cereus ASK202가 생산하는 $\beta$-Agarese의 특성)

  • 김봉조;황선희;김학주;강양순;하순득;공재열
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.96-102
    • /
    • 1999
  • Marine bacterium Bacillus cereus ASK202 produced an extracellular agarase (E.C.3.2.1.81) which showed a high level of enzyme activity in the presence of agar and agarose. In the optimal culture conditions, the agarase production increased 7.7 folds compared with the one obtained from the basal medium. Agarase production reached upto 160 units/L after 24hr of cultivation in a modified marine medium at $25^{\circ}C$. The degree of purification increased 31.5 folds with 27.8% yield through freeze drying, DEAE Sepharose CL-6B and Superose 6HR 10/30 column chromatography. The molecular weight of the purified agarase was determined to be 90,000 daltons by gel-permeation filteration. Optimal temperature and pH for the enzyme activity were $40^{\circ}C$ and 7.8, respectively. The enzyme was stable up to $50^{\circ}C$ and at a broad pH range of 5.0-10.0. The $\beta$-agarase was activated by $Zn(NO_3)_2$, and was inhibited by $CuSO_4$ and $SnCl_2$. The Km and Vmax values of this enzyme for agarose as a substrate was $2.4mg/m\ell$ and 13.6 mg/m$\ell$, respectively.

  • PDF

Pharmaceutical Characteristics of Korean Lumbricus rubellus Lumbrokinase (한국산 지렁이[Lumbricus rubellus]에서 분리한 Lumbrokinase의 약리학적 특성)

  • 조일환;이철규;임헌길;이형환
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.274-283
    • /
    • 2004
  • Six lumbrokinase (LK) fractions from Lumbricus rubellus lysates were purified by a series of column chromatographies. The molecular weights of the six LK fractions appeared to range from 24.6 to 33.1 kDa. In the experimental model of rat venous thrombosis, the thrombus weight and PAI activity decreased significantly when the LK was administered orally. However, the activities of APTT, PT and plasmin showed a significant increase. The aggregation of rat platelets pretreated with various LK doses was inhibited by thrombin, and the MDA generation decreased. The rat thoracic aorta and mesentric arteries contracted with phenylephrine relaxed due to the treatment of the LK fractions. These results suggest that the fibrinolytic effects of LK were mediated not only by proteolytic activity, but also by the inhibition of platelet agregation and the relaxation of blood vessels. It is concluded that the LK may be useful as a hemolytic agent for treatment of fibrin clot.

PKHD1 Gene Silencing May Cause Cell Abnormal Proliferation through Modulation of Intracellular Calcium in Autosomal Recessive Polycystic Kidney Disease

  • Yang, Ji-Yun;Zhang, Sizhong;Zhou, Qin;Guo, Hong;Zhang, Ke;Zheng, Rong;Xiao, Cuiying
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of $Ca^{2+}$ signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular $Ca^{2+}$ concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular $Ca^{2+}$ and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular $Ca^{2+}$ in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular $Ca^{2+}$ resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular $Ca^{2+}$.

Presence of Carbonic Anhydrase III-like Protein in Shaggy Sea Raven, Hemitripterus villosus (삼세기(Shaggy sea raven, Hemitripterus villosus)의 carbonic anhydrase III에 관한 연구)

  • Kweon, Rok Eun;Kho, Kang Hee
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.186-190
    • /
    • 2014
  • Carbonic anhydrase isozymes (CAs) are widespread zinc-containing metalloenzyme family. The enzyme catalyzes the reversible interconversion of $CO_2$ and $HCO_3$. This reaction is the main role of CA enzymes in physiological conditions. CA III, one of the CA isozymes, has been identified in many tissues. It is distinguished from the other isozymes by several characteristics, particularly by a lower specific activity and by its resistance to acetazolamide. However, the physiological function of CA III in fish is unknown. In this study, we examined the detection of CAs in the Shaggy sea raven Hemitripterus villosus, using SDS-PAGE, isoelectric focusing (IEF), and western blot analysis. We detected a significant protein band with molecular weight about 30 kDa from the tissues of H. villosus by SDS-PAGE and western blotting. A specific band of CA III with pI 7.0 was detected by IEF and western blotting in gill and muscle. The immunoreaction of anti-CA III expressed in the gill of H. villosus was much stronger than other tissues. One explanation for this result is that the fish gill is the only organ that is exposed to the external environment and that plays an important role in acid-base relevant ion transfer, the transfer of $H^+$ and/or $HCO{_3}^-$, for the maintenance of systemic pH. This is the first report on the identification of a carbonic anhydrase III-like protein from H. villosus.

Characterization of Neutral Invertase from Fast Growing Pea (Pisum sativum L.) Seedlings after Gibberellic Acid (GA) Treatment (GA 처리 후 급 성장하는 완두콩(Pisum sativum L.) 발아체로부터 분리된 중성 invertase의 특성)

  • Kim, Donggiun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1021-1026
    • /
    • 2015
  • Invertase (β-D-fructosfuranosidase, EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Three biochemical subgroups of invertases have been investigated in plants: vacuolar (soluble acid), cytoplasmic (soluble alkaline), and cell wall-bound (insoluble acid) invertases. An isoform of neutral invertase was purified from pea seedlings (Pisum sativum L.) and treated with gibberellic acid (GA) by sequential procedures consisting of ammonium sulfate precipitation, ion-exchange chromatography, absorption chromatography, and reactive green-19 affinity chromatography. The results of the overall insoluble invertase purification were a 430-fold increase. The purified neutral invertase was not glycosylated and had an optimum pH between neutral and alkaline (pH 6.8-7.5). It was inhibited by Tris, as well as by heavy metals, such as Hg2+ and Cu2+. Typical Michaelis–Menten kinetics were observed when the activity of the purified invertase was measured, with sucrose concentrations up to 100 mM. The Km and Vmax values were 12.95 mM and 2.98 U/min, respectively. The molecular mass was around 20 kDa. The sucrose-cleaving enzyme activity of this enzyme is similar to that of sucrose synthase and fructosyltransferase, but its biochemical characteristics are different from those of sucrose synthase and fructosyltransferase. Based on this biochemical characterization and existing knowledge, neutral INV is an invertase isoform in plants.