• 제목/요약/키워드: Molecular Biology

검색결과 9,888건 처리시간 0.035초

形態 및 蛋白質 電氣泳動像에 依한 韓國産 퉁가리屬 魚類의 比較 (Comparisons Among the Fishes of Genus Liobagrus in Korea by Their Morphology and Electrophoretic Patterns of Proteins)

  • 손영목;최의열;안태인
    • 한국동물학회지
    • /
    • 제27권1호
    • /
    • pp.25-34
    • /
    • 1984
  • 韓國産 Liobagrus屬의 2종 魚類에 대하여 形態的 特徵과 水溶性 蛋白質의 電氣泳動像을 水系別로 比較하였다. 形態的인 特徵에 있어서 漢江産 L. andersoni는 錦江 및 洛東江에서 採集된 L. mediadiposalis와 顯著한 차이가 있었으나 錦江産 L. andersoni는 區分되는 形態的 特徵이 上記 2種間에 부분적인 一致를 보일뿐만 아니라 體長에 對한 體幅比는 독특한 값을 나타내었다. 이같은 類以性 및 差異는 각종 조직을 分離 SDS PAGE한 蛋白質 樣相에서도 나타났으며, 특히 筋肉蛋白質 樣相 比較에서 분명하였다. 筋蛋白質의 二次元電氣泳動像에서는 더욱 뚜렷하게 差異나는 수종의 저분자 蛋白質이 探知되었다. 本 硏究에서 얻은 電氣泳動에 의한 蛋白質 分劃像은 形態的 比較와 一致를 보일 뿐만 아니라 微量蛋白質 組成까지 細部的인 比較를 가능케하므로 Liobagrus屬의 水系에 따른 差異 및 分類가 電氣泳動에 의해서 신빙성있게 이루어질 수 있음을 보였다. 以上의 결과에 비추어 볼 때 錦江에서 採集되는 L. andersoni 類似 標本은 漢江의 L. andersoni와는 별도로 分類되어야 한다고 보며, 이를 漢江産의 地理的變異型, 또는 上記 究明된 두 종간의 自然雜種 내지는 別種인지의 與否를 명확히 하기 위한 몇가지 具體的인 檢討 必要하다고 본다.

  • PDF

Hypoxia Mediates Runt-Related Transcription Factor 2 Expression via Induction of Vascular Endothelial Growth Factor in Periodontal Ligament Stem Cells

  • Xu, Qian;Liu, Zhihua;Guo, Ling;Liu, Rui;Li, Rulei;Chu, Xiang;Yang, Jiajia;Luo, Jia;Chen, Faming;Deng, Manjing
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.763-772
    • /
    • 2019
  • Periodontitis is characterized by the loss of periodontal tissues, especially alveolar bone. Common therapies cannot satisfactorily recover lost alveolar bone. Periodontal ligament stem cells (PDLSCs) possess the capacity of self-renewal and multilineage differentiation and are likely to recover lost alveolar bone. In addition, periodontitis is accompanied by hypoxia, and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) is a master transcription factor in the response to hypoxia. Thus, we aimed to ascertain how hypoxia affects runt-related transcription factor 2 (RUNX2), a key osteogenic marker, in the osteogenesis of PDLSCs. In this study, we found that hypoxia enhanced the protein expression of $HIF-1{\alpha}$, vascular endothelial growth factor (VEGF), and RUNX2 ex vivo and in situ. VEGF is a target gene of $HIF-1{\alpha}$, and the increased expression of VEGF and RUNX2 proteins was enhanced by cobalt chloride ($CoCl_2$, $100{\mu}mol/L$), an agonist of $HIF-1{\alpha}$, and suppressed by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, $10{\mu}mol/L$), an antagonist of $HIF-1{\alpha}$. In addition, VEGF could regulate the expression of RUNX2, as RUNX2 expression was enhanced by human VEGF ($hVEGF_{165}$) and suppressed by VEGF siRNA. In addition, knocking down VEGF could decrease the expression of osteogenesis-related genes, i.e., RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1), and hypoxia could enhance the expression of ALP, COL1, and osteocalcin (OCN) in the early stage of osteogenesis of PDLSCs. Taken together, our results showed that hypoxia could mediate the expression of RUNX2 in PDLSCs via $HIF-1{\alpha}$-induced VEGF and play a positive role in the early stage of osteogenesis of PDLSCs.

Assessment of testicular steroidogenic enzymes expression in experimental animal model following withdrawal of nandrolone decanoate

  • Min, TaeSun;Karthikeyan, Adhimoolam;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • 제63권6호
    • /
    • pp.1247-1264
    • /
    • 2021
  • Anabolic steroids are frequently used to increase the growth rate of meat-producing animals. Exposure to an anabolic-androgenic steroid, nandrolone decanoate (ND), is associated with expressional reduction of testicular steroidogenic enzymes. However, the effect of withdrawal of ND exposure on the expression of these testicular molecules has not been thoroughly explored. The current research investigated expression changes of testicular steroidogenic enzymes in rats at several recovery periods (2, 6, and 12 weeks) after the stop of ND treatment with different doses (2 and 10 mg/kg body weight) for 12 weeks. Body and testis weights were recorded, and transcript levels of molecules were determined by quantitative real-time polymerase chain reaction (PCR). The immunohistochemistry was used to examine the changes of immuno-intensities of molecules. At 6 and 12 weeks of the recovery period, the 10 mg/kg ND-treated rats were lighter than other experimental groups. The interstitial compartment vanished by ND treatment filled up as the recovery period became longer. The expression of steroidogenic acute regulatory protein was returned to the control level at 12 weeks of the recovery period. Expression levels of cytochrome P450 side-chain cleavage and 17a-hydroxylase were increased in 2 mg/kg ND-treated group at 6 weeks of the recovery period, and transcript levels of these molecules in 2 and 10 mg/kg ND-treated groups at 12 weeks of the recovery period were significantly lower than the control. Expression levels of 3β-hydroxysteroid dehydrogenase (HSD) type I and 17β-HSD type 3 in 2 mg/kg ND-treated group were comparable with those of control at 12 weeks of the recovery period, but not in 10 mg/kg ND-treated group. Expression of cytochrome P450 aromatase (Cyp19) was reverted to the control level at 2 weeks of the recovery period. Except for Cyp19, there was a visible increase of immuno-staining intensity of other testicular steroidogenic enzymes in the Leydig cells as the recovery period progressed. This research has demonstrated that the cease of ND administration could restore the expression of testicular steroidogenic enzymes close to the normal level. Nevertheless, a relatively long recovery period, compared to the ND-exposure period would be required to retrieve normal expression levels of testicular steroidogenic enzymes.

Ubiquitin D Promotes Progression of Oral Squamous Cell Carcinoma via NF-Kappa B Signaling

  • Song, An;Wang, Yi;Jiang, Feng;Yan, Enshi;Zhou, Junbo;Ye, Jinhai;Zhang, Hongchuang;Ding, Xu;Li, Gang;Wu, Yunong;Zheng, Yang;Song, Xiaomeng
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.468-480
    • /
    • 2021
  • Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.

Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis

  • Umair, Zobia;Kumar, Shiv;Kim, Daniel H.;Rafiq, Khezina;Kumar, Vijay;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1061-1071
    • /
    • 2018
  • From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.

Celeribacter marinus IMCC12053의 외향고리 GpC DNA 메틸트랜스퍼라아제 (Exocyclic GpC DNA methyltransferase from Celeribacter marinus IMCC12053)

  • 김정희;오현명
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.103-111
    • /
    • 2019
  • DNA 메틸화는 유전체의 무결성의 유지 및 유전자 발현 조절과 같은 박테리아의 다양한 과정에 관여한다. Alphaproteobacteria 종에서 보존된 DNA 메틸 전이 효소인 CcrM은 S-아데노실 메티오닌을 공동 기질로 사용하여 $N^6$-아데닌 또는 $N^4$-시토신의 메틸 전이 효소 활성을 갖는다. Celeribacter marinus IMCC 12053는 해양 환경에서 분리된 알파프로테오박테리아로서 GpC 시토신의 외향고리 아민의 메틸기를 대체하여 $N^4$-메틸 시토신을 생산한다. 단일 분자 실시간 서열 분석법(SMRT)을 사용하여, C. marinus IMCC12053의 메틸화 패턴을 Gibbs Motif Sampler 프로그램을 사용하여 확인하였다. 5'-GANTC-3'의 $N^6$-메틸 아데노신과 5'-GpC-3'의 $N^4$-메틸 시토신을 확인하였다. 발현된 DNA 메틸전이 효소는 계통 발생 분석법을 사용하여 선택하여 pQE30 벡터에 클로닝 후 $dam^-/dcm^-$ 대장균을 사용하여 클로닝된 DNA 메틸라아제의 메틸화 활성을 확인하였다. 메틸화 효소를 코딩하는 게놈 DNA 및 플라스미드를 추출하고 메틸화에 민감한 제한 효소로 절단하여 메틸화 활성을 확인하였다. 염색체와 메틸라아제를 코드하는 플라스미드를 메틸화시켰을 때에 제한 효소 사이트가 보호되는 것으로 관찰되었다. 본 연구에서는 분자 생물학 및 후성유전학을 위한 새로운 유형의 GpC 메틸화 효소의 잠재적 활용을 위한 외향고리 DNA 메틸라제의 특성을 확인하였다.

Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease

  • Kim, Hyunho;Sung, Jinmo;Kim, Hyunsuk;Ryu, Hyunjin;Park, Hayne Cho;Oh, Yun Kyu;Lee, Hyun-Seob;Oh, Kook-Hwan;Ahn, Curie
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.463-468
    • /
    • 2019
  • Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.

HSP90 inhibitor, AUY922, debilitates intrinsic and acquired lapatinib-resistant HER2-positive gastric cancer cells

  • Park, Kang-Seo;Hong, Yong Sang;Choi, Junyoung;Yoon, Shinkyo;Kang, Jihoon;Kim, Deokhoon;Lee, Kang-Pa;Im, Hyeon-Su;Lee, Chang Hoon;Seo, Seyoung;Kim, Sang-We;Lee, Dae Ho;Park, Sook Ryun
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.660-665
    • /
    • 2018
  • Human epidermal growth factor receptor 2 (HER2) inhibitors, such as trastuzumab and lapatinib are used to treat HER2-positive breast and gastric cancers. However, as with other targeted therapies, intrinsic or acquired resistance to HER2 inhibitors presents unresolved therapeutic problems for HER2-positive gastric cancer. The present study describes investigations with AUY922, a heat shock protein 90 (HSP90) inhibitor, in primary lapatinib-resistant (ESO26 and OE33) and lapatinib-sensitive gastric cancer cells (OE19, N87, and SNU-216) harboring HER2 amplification/over-expression. In order to investigate whether AUY922 could overcome intrinsic and acquired resistance to HER2 inhibitors in HER2-positive gastric cancer, we generated lapatinib-resistant gastric cancer cell lines (OE19/LR and N87/LR) by continuous exposure to lapatinib in vitro. We found that activation of HER2 and protein kinase B (AKT) were key factors in inducing intrinsic and acquired lapatinib-resistant gastric cancer cell lines, and that AUY922 effectively suppressed activation of both HER2 and AKT in acquired lapatinib-resistant gastric cancer cell lines. In conclusion, AUY922 showed a synergistic anti-cancer effect with lapatinib and sensitized gastric cancer cells with intrinsic resistance to lapatinib. Dual inhibition of the HSP90 and HER2 signaling pathways could represent a potent therapeutic strategy to treat HER2-positive gastric cancer with intrinsic and acquired resistance to lapatinib.

LncRNA MALAT1 Depressed Chemo-Sensitivity of NSCLC Cells through Directly Functioning on miR-197-3p/p120 Catenin Axis

  • Yang, Tian;Li, Hong;Chen, Tianjun;Ren, Hui;Shi, Puyu;Chen, Mingwei
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.270-283
    • /
    • 2019
  • This study was aimed to explore if lncRNA MALAT1 would modify chemo-resistance of non-small cell lung cancer (NSCLC) cells by regulating miR-197-3p and p120 catenin (p120-ctn). Within this investigation, we totally recruited 326 lung cancer patients, and purchased 4 NSCLC cell lines of A549, H1299, SPC-A-1 and H460. Moreover, cisplatin, adriamycin, gefitinib and paclitaxel were arranged as chemotherapies, and half maximal inhibitory concentration (IC50) values were calculated to evaluate the chemo-resistance of the cells. Furthermore, mice models of NSCLC were also established to assess the impacts of MALAT1, miR-197-3p and p120-ctn on tumor growth. Our results indicated that MALAT1 and miR-197-3p were both over-expressed within NSCLC tissues and cells, when compared with normal tissues and cells (P < 0.05). The A549, H460, SPC-A-1 and SPC-A-1 displayed maximum resistances to cisplatin ($IC50=15.70{\mu}g/ml$), adriamycin ($IC50=5.58{\mu}g/ml$), gefitinib ($96.82{\mu}mol/L$) and paclitaxel (141.97 nmol/L). Over-expression of MALAT1 and miR-197-3p, or under-expression of p120-ctn were associated with promoted viability and growth of the cancer cells (P < 0.05), and they could significantly strengthen the chemo-resistance of cancer cells (P < 0.05). MALAT1 Wt or p120-ctn Wt co-transfected with miR-197-3p mimic was observed with significantly reduced luciferase activity within NSCLC cells (P < 0.05). Finally, the NSCLC mice models were observed with larger tumor size and weight under circumstances of over-expressed MALAT1 and miR-197-3p, or under-expressed p120-ctn (P < 0.05). In conclusion, MALAT1 could alter chemo-resistance of NSCLC cells by targeting miR-197-3p and regulating p120-ctn expression, which might assist in improvement of chemo-therapies for NSCLC.

Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

  • Lee, Kyoung-Hee;Lee, Jungsil;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1008-1015
    • /
    • 2018
  • $I{\kappa}B$, a cytoplasmic inhibitor of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces $I{\kappa}B{\alpha}$ degradation via an alternative pathway, lysosome, which results in $NF-{\kappa}B$ activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced $I{\kappa}B{\alpha}$ degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for $I{\kappa}B{\alpha}$ degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced $I{\kappa}B{\alpha}$ degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent $I{\kappa}B{\alpha}$ degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the $I{\kappa}B$/$NF-{\kappa}B$ pathway, which attenuates the anti-tumor efficacy of PIs.