• Title/Summary/Keyword: Molecular

Search Result 31,345, Processing Time 0.052 seconds

General Perspectives for Molecular Nuclear Imaging (분자핵의학영상 개관)

  • Chung, June-Key
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.111-114
    • /
    • 2004
  • Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at a anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. in the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable diseases such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging.

New Tactics for Stereospecificity in Metallocene-based Olefin Polymerization

  • Kim, Seong-Kyun;Park, Sung-Jin;Kim, Hwa-Kyu;Yoon, Seung-Woong;Lee, Jun-Seong;Park, Myung-Hwan;Do, Young-Kyu
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.221-221
    • /
    • 2006
  • The stereochemical control in polypropylenes and styrene-ethylene copolymers based on homogeneous single-site polymerization catalysts has received great attention since the stereocpecificity is one of the key factors in tailoring the polymer properties. Thus, we have developed new tactics for isospecificity in propylene polymerization with the unbridged metallocenebased systems and syndiospecific styrene-styrene sequence in styrene-ethylene copolymerization with the group 4 metallocene system. Brief details of the synthesis, structures and the polymerization behavior of a set of new metallocene catalysts will be presented.

  • PDF

Crystal structure of the pretense domain of an ATP-independent heat shock protease HtrA

  • Kim, Dong-Young;Kim, Dong-Ryoung;Ha, Sung-Chul;Neratur K.Lokanath;Hwang, Hye-Yeon;Kim, Kyeong-Kyu
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.24-24
    • /
    • 2002
  • HtrA (high temperature requirement A), a periplasmic heat shock protein, is known to have molecular chaperone function at low temperatures and proteolytic activity at elevated temperatures. To investigate the mechanism of functional switch to pretense, we have determined the crystal structure of the N-terminal protease domain (PD) of HtrA from Thermotoga maritima. HtrA PD shares the same fold with chymotrypsin-like serine professes. However, crystal structure suggests that HtrA PD is not an active pretense at current state since its active site is not formed properly and blocked by an additional helical lid. On the surface of the lid, HtrA PD has hydrophobic patches that could be potential substrate binding sites for molecular chaperone activity. Present structure suggests that the activation of the proteolytic function of HtrA PD at elevated temperatures might occur by the conformational change.

  • PDF