• Title/Summary/Keyword: Molding system design

Search Result 236, Processing Time 0.023 seconds

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.

A study on the reduction of design variables for injection mold cooling system optimization (사출금형 냉각시스템 최적화를 위한 설계변수의 감소 방법 연구)

  • Choi, J.H.;Tae, J.S.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.361-364
    • /
    • 2009
  • The cooling system optimization for injection molds was studied with a response surface method in the previous research. It took so much time to find an optimum solution for a large product due to an extensive amount of calculation time for the CAE analysis. In order to use the optimization technique in the actual design process, the calculation time should be much reduced. In this study, we tried to reduce the number of design variables with the concept of the close relationship between the depth and the distance of cooling channels. The optimum ratio of the distance to the depth of cooling channels for a 2-dimensional problem was 2.0 so that the optimum ratio was again sought out for 4 industrial products. The major cooling effect of the injection molds for large products rely on baffle tubes. The optimum ratio of the distance to the depth for baffle tubes was 2.0 for the large products. The result enables us to reduce the number of the design variables by half in the cooling system optimization problem.

  • PDF

Optimal design of Natural Fiber Composite Structure for Automobile

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • In this study, a optimal design on the hood automotive using eco-friendly natural fiber composites is performed. The hood of an automobile is determined by dividing the Inner panel shape through optimization phase to outer panel and inner panel. It was performed to optimize the size of the thickness of the inner panel and the outer panel by applying a flax/epoxy composite materials. The optimized shape was evaluated for weight-lightening, stability and the pedestrian collision safety. Through the resin flow analysis are confirmed to molding possibility judgment of product.

Optimization of Valve Gates Locations Using Automated Runner System Modeling and Metamodels (유동 안내부 모델링 자동화 및 근사모델을 이용한 자동차용 도어트림의 밸브 게이트 위치 최적화)

  • Joe, Yong-Su;Park, Chang-Hyun;Pyo, Byung-Gi;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2014
  • Injection pressure is one of factors that influence part quality. In this paper, injection pressure was minimized by optimizing valve gate locations. In order to perform design optimization, MAPS-3DTM (Mold Analysis and Plastic Solution-3D) was used for injection mold analysis and PIAnOTM (Process Integration, Automation and Optimization) was used as process integration and design optimization. Also we adapted meta models based on design of experiments for efficiency. By using introduced methodology, we were able to obtain a result so that maximum injection pressure reduced by 28% compared to the initial design. And the validity of the proposed method could also be demonstrated.

Automatic detection of the optimal ejecting direction based on a discrete Gauss map

  • Inui, Masatomo;Kamei, Hidekazu;Umezu, Nobuyuki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, the authors propose a system for assisting mold designers of plastic parts. With a CAD model of a part, the system automatically determines the optimal ejecting direction of the part with minimum undercuts. Since plastic parts are generally very thin, many rib features are placed on the inner side of the part to give sufficient structural strength. Our system extracts the rib features from the CAD model of the part, and determines the possible ejecting directions based on the geometric properties of the features. The system then selects the optimal direction with minimum undercuts. Possible ejecting directions are represented as discrete points on a Gauss map. Our new point distribution method for the Gauss map is based on the concept of the architectural geodesic dome. A hierarchical structure is also introduced in the point distribution, with a higher level "rough" Gauss map with rather sparse point distribution and another lower level "fine" Gauss map with much denser point distribution. A system is implemented and computational experiments are performed. Our system requires less than 10 seconds to determine the optimal ejecting direction of a CAD model with more than 1 million polygons.

Achromatic and Athermal Design of a Mobile-phone Camera Lens by Redistributing Optical First-order Quantities

  • Tae-Sik Ryu;Sung-Chan Park
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.273-282
    • /
    • 2023
  • This paper presents a new method for redistributing effectively the first orders of each lens element to achromatize and athermalize an optical system, by introducing a novel method for adjusting the slope of an achromatic and athermal line. This line is specified by connecting the housing, equivalent single lens, and aberration-corrected point on a glass map composed of available plastic and glass materials for molding. Thus, if a specific lens is replaced with the material characterized by the chromatic and thermal powers of an aberration-corrected point, we obtain an achromatic and athermal system. First, we identify two materials that yield the minimum and maximum slopes of the line from a housing coordinate, which specifies the slope range of the line spanning the available materials on a glass map. Next, redistributing the optical first orders (optical powers and paraxial ray heights) of lens elements by moving the achromatic and athermal line into the available slope range of materials yields a good achromatic and athermal design. Applying this concept to design a mobile-phone camera lens, we efficiently obtain an achromatic and athermal system with cost-effective material selection, over the specified temperature and waveband ranges.

A Study on UX-Design as a Model for a Data-driven Apps in IoT (IoT에서 데이터 기반 앱을 모델로 한 UX디자인에 관한 연구)

  • Moon, Hee-Jeoung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.819-824
    • /
    • 2015
  • Design of the past focusing on molding and system is gradually changed into design focusing on users that reflects design philosophy considering users, and especially, the importance of User Experience Design that is to offer the best experience in using some products or services is realized. This study accessed design based on data having a low effect on function of wearable among changes that UX Design should consider in IoT generation. I think the data is diverse and many existing social commerce app, similar to the layout of the data in IoT devices based on the layout of the interface.Apps that data based model to analyze the layout. and the structure of the UX design were summarized.

Designing Mold Feed Systems for Plug Cover Housing with Filling Analysis (충전해석에 의한 Plug Cover Housing 금형의 피드시스템 설계)

  • Park, Jong-Cheon;Yu, Man-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.123-130
    • /
    • 2018
  • In this study, the optimum design of mold feed systems is determined for plug cover housing (PCH), which is a cover-assembly product that protects the wiring of automobile connectors. The design goal is to achieve the filling balance of the resin in the left and right covers while avoiding the occurrence of weld lines in the hinge as much as possible. For the optimization, an orthogonal array experiment and a main effect analysis of the design factors are performed, and the factors that cause the interactions with the two design characteristics are selected as the design variables. We present some design alternatives, i.e., some combinations of the design variables, and analyze the filling-simulation results, expected molding risk, and cost economics to select an optimum design solution among the design alternatives. In the optimal solution, the weld line is generated at a position outside the hinge, and the filling balance is also acceptable, showing that both design goals can be satisfied simultaneously despite conflicting with each other.

An Integrated CAD System for Design of Extruder Screw (압출 스크류 설계를 위한 CAD 시스템 개발)

  • Yoon, Jun-Young;Hwang, Yong-Keun;Park, Joo-Sam;Ko, Tae-Jo;Park, Jung-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.100-107
    • /
    • 2002
  • The extruder screw is a part for extruding material in a injection molding machine. The screw's geometrical shape can mathematically be described by a sweep surface which is constructed by sweeping a section curve composed of a few circular arcs, along a helical guide curve. In the paper we developed a dedicated CAD system which basically is parametric in a sense that the system initially takes several design parameters to construct the geometric elements including the final sweep surface of the screw as well as section & guiding curves, along with feasibility check of the input parameter values, without further user interaction. The system has been developed as a built-in module onto a commercial CAD system, which can further incorporate additional NC-out functions with ease.

A Study on the Development of Friction Hinge with Automatic Closed Function (자동 닫힘 기능을 갖는 마찰힌지 개발에 관한 연구)

  • Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • A friction hinge system which moves without power was designed and developed using the principle of friction force, which is caused by interference between the inner diameter of a silicon cap and the outer diameter of a cylindrical roller bearing with one-way rotation in a counterclockwise direction. The system was applied to the lid of buffet ware, which moved up by external force and moved down by gravitational force. However, design conditions which included a rotation angle of the hinge of more than 80 degrees and a closing time of more than 20 seconds were required when the lid of the buffet ware closed due to gravitational force. The design safety of the friction hinge body connected to the lid of the buffet ware from the hinge system was checked on the basis of structural, fatigue and thermal analyses. The material of the shaft, cap and flange among the hinge elements was changed to polyethylene from steel to reduce the weight of the friction hinge system. An injection molding simulation was performed and injection molds of the shaft, cap and flange were created. The weight of the hinge system was decreased from 805g to 219g.